Через вершины треугольника авс проведены параллельные прямые, пересекающие плоскость α, параллельную плоскости авс, соответственно в точках а1, в1, с1. найдите стороны треугольника а1 в1 с1 , если ав=5см,ас=4см,∠вас=60°
Объём правильной четырёхугольной призмы находится по формуле: V=Sоснования*h У правильной четырёхугольной призмы в основании лежит квадрат, следовательно формула преобразуется в след.вид:
V=a²*h где а - сторона основания
Найдём высоту (h). Для этого найдём диагональ основания (обзову её d для удобства). Она будет являться одним из катетов прямоугольного треугольника. Второй катет - это искомая высота, а гипотенуза - диагональ призмы. Считаем:
11² = 8²+х²-2*8*х*(-0,4).
Получаем квадратное уравнение х²+6,4х-57 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=6.4^2-4*1*(-57)=40.96-4*(-57)=40.96-(-4*57)=40.96-(-228)=40.96+228=268.96;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√268.96-6.4)/(2*1)=(16.4-6.4)/2=10/2=5;x₂=(-√268.96-6.4)/(2*1)=(-16.4-6.4)/2=-22.8/2=-11.4 (отрицательный корень не принимаем).
Площадь треугольника находим по формуле Герона:
S =√(p(p-a)(p-b)(p-c)) = √(12(12-8)(12-5)(12-11)) = √(12*4*7*1) = 18,330303.
Здесь р - полупериметр, равный (8+5+11)/2= 12.
Медиану СМ находим по формуле:
СМ = m(c) = (1/2)√(2a²+2b²-c²) = (1/2)√(2*5²+2*11²-8²) = (1/2)√( 50 + 242 - 64) ≈ 7,549834.
V=Sоснования*h
У правильной четырёхугольной призмы в основании лежит квадрат, следовательно формула преобразуется в след.вид:
V=a²*h
где а - сторона основания
Найдём высоту (h).
Для этого найдём диагональ основания (обзову её d для удобства). Она будет являться одним из катетов прямоугольного треугольника. Второй катет - это искомая высота, а гипотенуза - диагональ призмы. Считаем:
d²=a²+a²
d²=8²+8²
d²=128
d=√128
Теперь считаем высоту:
h²=18²-(√128)²
h²=324-128
h²=196
h=√196
h=14
Ну и теперь возвращаемся к формуле объёма:
V=8²*14
V=64*14
V=896
ответ: 896 см³