букв не вижу, поэтому буквенные наименования сторон и углов от меня не ждите.
Объяснение:
Задача 5
треугольники равны, т.к. 1) два равных угла = 90°
2) Есть общая сторона(букв не назову, не вижу); 3) 2 стороны отмечены как равные(внизу которые).
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 8.
Треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Противоположные стороны параллелограмма равны.
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 9.
треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Есть другие равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей
Следовательно, треугольники равны по 2 признаку - по 2 углам и стороне между ними
букв не вижу, поэтому буквенные наименования сторон и углов от меня не ждите.
Объяснение:
Задача 5
треугольники равны, т.к. 1) два равных угла = 90°
2) Есть общая сторона(букв не назову, не вижу); 3) 2 стороны отмечены как равные(внизу которые).
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 8.
Треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Противоположные стороны параллелограмма равны.
Следовательно, треугольники равны по 1 признаку - по 2 сторонам и углу между ними
Задача 9.
треугольники равны, т.к. 1) Есть равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей; 2) Диагональ параллелограмма - общая сторона треугольников, следовательно равная; 3) Есть другие равные углы, как накрест лежащие при параллельных сторонах параллелограмма и секущей
Следовательно, треугольники равны по 2 признаку - по 2 углам и стороне между ними
Объяснение:
Дано:
АH=12 см, АВ=13 см, D = 26 = 2r
BC = ?
описанная окружность с центром на серединных перпендикуляров .
для вписанного в окружность Δ R= (a*b*c)/ (2S)
АК = КС = 1/2 *АС; АМ = МВ = 1/2 *АВ
из ΔАОМ ; ОМ = √(АО^2 - AM^2) = √(13^2 - (13/2)^2)= √[(13^2* (1- 1/4)]
OM = 6.5√3 то есть АО- гипотенуза, АМ - 1/2*АО , ⇒ ∠АОМ = 30° .
ΔАОВ - равнобедренный АО = ОВ, ∠ОАВ = ∠ОВА = 60 ⇒ ΔАОВ-равносторонний, ⇒ ΔАВС равнобедренный, СМ =медиана, биссектриса, высота. (см рис.2) ⇒ AC = BC
( из ΔBHС ) BH = √(AB^2-BH^2) = √(13^2 - 12^) = √(13+12)(13-12)=√25 = 5
ΔBHA и Δ СКО подобны как Δ с взаимно ⊥ сторонами, а именно
R= (a*b*c)/ (4S) = AC^2* AB / (4SΔавс)
SΔавс 4 1/2*BH*AC