1) С1С = 6 см, а как сумма С1М и МС, выраженная в частях:
1 + 2 = 3 части; следовательно 1 часть = 6 : 3 = 2 см.
Откуда С1М = 1 * 2 = 2 см, а МС = 2*2 = 4 см.
2) Согласно условию, D1К = КD. Следовательно, D1К = КD = 6:2 = 3 см.
3) Через точку К проведём линию, параллельную ребру DC, и точку её пересечения с ребром С1С обозначим М1. Противоположные стороны образовавшегося прямоугольника равны между собой:
М1С = KD = 3 см (по построению)
KМ1 = DC = 6 см (по построению)
4) Треугольник МКМ1 подобен треугольнику МNC согласно признаку равенства трёх углов одного треугольника трём углам другого треугольника. А это значит, что можно составить следующую пропорцию:
ММ1 : КМ1 = МС : NC.
ММ1 = МС - М1С = 4 - 3 = 1 см
KМ1 = DC = 6 см,
МС = 4 см.
1 : 6 = 4 : NC,
откуда NC = 6 * 4 : 1 = 24 см
5) В прямоугольном треугольнике ВСN отрезок NВ является гипотенузой, а ВС = 6 см и NC = 24 см - катетами.
Следовательно, по теореме Пифагора:
NВ = √ (6^2 + 24^2) = √ (36 + 576) = √612 = 6√17, или с учетом округления, NВ ≈ 24,74 см
NВ = 6√17, или NВ ≈ 24,74 см
Объяснение:
Задача № 4.
1) С1С = 6 см, а как сумма С1М и МС, выраженная в частях:
1 + 2 = 3 части; следовательно 1 часть = 6 : 3 = 2 см.
Откуда С1М = 1 * 2 = 2 см, а МС = 2*2 = 4 см.
2) Согласно условию, D1К = КD. Следовательно, D1К = КD = 6:2 = 3 см.
3) Через точку К проведём линию, параллельную ребру DC, и точку её пересечения с ребром С1С обозначим М1. Противоположные стороны образовавшегося прямоугольника равны между собой:
М1С = KD = 3 см (по построению)
KМ1 = DC = 6 см (по построению)
4) Треугольник МКМ1 подобен треугольнику МNC согласно признаку равенства трёх углов одного треугольника трём углам другого треугольника. А это значит, что можно составить следующую пропорцию:
ММ1 : КМ1 = МС : NC.
ММ1 = МС - М1С = 4 - 3 = 1 см
KМ1 = DC = 6 см,
МС = 4 см.
1 : 6 = 4 : NC,
откуда NC = 6 * 4 : 1 = 24 см
5) В прямоугольном треугольнике ВСN отрезок NВ является гипотенузой, а ВС = 6 см и NC = 24 см - катетами.
Следовательно, по теореме Пифагора:
NВ = √ (6^2 + 24^2) = √ (36 + 576) = √612 = 6√17, или с учетом округления, NВ ≈ 24,74 см
ответ: NВ = 6√17, или NВ ≈ 24,74 см
что бы найти площадь равнобедренного треугольника нужна высота. s=ah/2
чертим высоту вн. а высота в равнобедренном треугольнике является медианой и высотой, и делит основание на 2 равные части. значит ан=нс=24: 2=12
нам нужной найти высоту вн
вн можно найти по теореме пифагора, ведь треугольник авн прямоугольный т.к вн является ещё и высотой
вн= корень из ав ²-ан²
вн=корень из 144-169=25 корень из 25 =5
площадь треугольника равна ан/2
а=ан
н=вн
s=5*12/2=30 это площадь треугольника авн а треугольник внс ему равен по 3-м сторонам.
1)ав=вс=13
2)ан=сн=12
3)вн- общая =>
треугольник равны, значит и площади их равны. а площадь треугольника авс=авн+внс
авс=60
ответ : 60 см²