Четырёхугольник задан координатами своих вершин A(-3;3), B (1;7), C (7;5), D (-1;-3) 1) докажите что четврехугльник ABCD равнобедренная трапеция.
2) Напишите уравнение окружности, построенной на строне DC, как на диаметре;
3) Напишите уравнение прямой, содержащей среднюю линию ABCD
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
АМ=1\2ВС=МС, тк АМ-медиана, а медиана прямоугольного треугольника равна половине гипотенузы, значит треугольник АМС-равнобедренный.
Рассмотри этот треугольник. В нем угол МАН=46 гр, угол АНМ=90 гр., значит, угол АМН=90-46=44 гр.
Ты ведь знаешь, что углы при основании равнобедр. треугольника равны? Треугольник АМС -равнобедренный по доказанному. Тем более угол противолежащий углам при основании только что был найден: угол АМН= 44 гр. Значит угол А+угол С=180-44=136 гр или уголА=углу С = 136\2=68гр.
Угол С=68 градусов.