Четырехугольник задан вершинами вершинами А (4;5) B(13;3) C(13;-3) D (6;-4) найти.
1) длину стороны AB
2)уравнение прямой AM , где M – середина отрезка BC
3)уравнение перпендикуляра, опущенного с вершины B на сторону
AD
4) уравнение прямой, проходящей через вершину D , параллельно
стороны AB
5) величину угла B
6) расстояние от точки M до стороны AD
7) площадь четырехугольника ABCD
Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой же точке и радиус его равен половине ребра SB. Ребро SB найдем по Пифагору: SB=√(L²+b²).
Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или
Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²). (ответ).
Найдем объем пирамиды.
Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника АВС. (То есть грань ASC не перпендикулярна плоскости основания). Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую проецируется вершина S пирамиды, так как по теореме, обратной теореме о трех перпендикулярах, "прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота, биссектриса и медиана этого треугольника.
Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или
SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)]
Объем пирамиды Vп=(1/3)*So*H. Или
Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или
Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)]. (ответ).
Проверим решение на конкретных числах.
Пусть b=4, L=3, β=60.
Тогда SB=√(L²+b²)=5.
PB=√(16+4)=√12=2√3.
AH=4√3/3, SH=√(9-48/9)=√33/3. (первый вариант).
HP=2√3/3, SP=√(L²-CP²)=√5.
SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант).
HB=HP+PB=8√3/3.
SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант).
Из моего решения:
SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².