Теорема пифагора: квадрат гипотенузы равен квадрату катетов. 1)с^2= 8^2+1^2=64+1=65 с=корень из 65 2) 12^2=10^2+b^2 144=100+b^2 b^2= 44 b= 2 корень из 11 3)диагонали при пересечении делятся пополам. получается треугольник с катетами 6 см и 8 см, а сторона ромба это гипотенуза треугольника. с^2=36+64 с^2=100. с=10 см. сторона ромба =10 см 4) диагональ прямоугольника образует со сторонами прямоугольный треугольник. с^2=36+49. с^2=85. с =корень из 85 5) в равнобедренном треугонике боковые стороны равны. s= 11×11×10=1210
1)Две прямые на плоскости называются параллельными если они не пересекаются. Два отрезка называются параллельными если они лежат на параллельных прямых
2)Прямая с называется секущей по отношению к прямым а и в если она пересекает их в двух точках
3)Если при пересечении двух прямых секущей накрест лежащие углы равны то прямые параллельны
4)Если при пересечении двух прямых секущей соответственные углы равны то прямые параллельны
5)Если при пересечении двух прямых секущей сумма односторонних углов равна 180 то прямые параллельны
6)с чертежного угольника и линейки
7)Утверждения которые принимаются в качестве исходных положений на основе которых доказываются теоремы называются аксиомами
Пример:Через любые две точки проходит прямая и притом только одна
8)Через точку не лежащую на данной прямой проходит только одна прямая параллельна данной
9)Через точку не лежащую на данной прямой проходит только одна прямая параллельна данной
10)Утверждение которое выводится непосредственно из аксиом или теорем
Объяснение:
1)Две прямые на плоскости называются параллельными если они не пересекаются. Два отрезка называются параллельными если они лежат на параллельных прямых
2)Прямая с называется секущей по отношению к прямым а и в если она пересекает их в двух точках
3)Если при пересечении двух прямых секущей накрест лежащие углы равны то прямые параллельны
4)Если при пересечении двух прямых секущей соответственные углы равны то прямые параллельны
5)Если при пересечении двух прямых секущей сумма односторонних углов равна 180 то прямые параллельны
6)с чертежного угольника и линейки
7)Утверждения которые принимаются в качестве исходных положений на основе которых доказываются теоремы называются аксиомами
Пример:Через любые две точки проходит прямая и притом только одна
8)Через точку не лежащую на данной прямой проходит только одна прямая параллельна данной
9)Через точку не лежащую на данной прямой проходит только одна прямая параллельна данной
10)Утверждение которое выводится непосредственно из аксиом или теорем