Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
Прежде чем решать задачу вспомним теорию: что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство . т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник: Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым
Из условия известно, что в треугольнике ABC стороны АС и BC равны. Внешний угол при вершине В равен 100°. Для того, чтобы найти угол С давайте рассуждать.
Первое, что мы можем сделать — это найти угол B. В этом нам свойство внешних углов. Сумма смежных углов равна 180°.
180° - 100° = 80°.
Из условия известно, что стороны AC и BC равны (треугольник равнобедренный), то и углы A и B равны.
То есть угол А равен углу В и равен 80°.
Далее используем теорему о сумме углов треугольника.
180° - 80° * 2 = 20°, итак, угол C = 20°.
ответ: угол С равен 20°.
что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство .
т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник
т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник:
Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым