Периметр-это сумма длин всех сторон в параллелограмме противолежащие стороны равны значит 32-6-6=20 (сумма 2-х противолежащих сторон) вторая сторона =10 см проведём высоту, один из углов=150 гр,значит второй соседний равен 30 гр, рассмотрим прямоугольный треугольник, гипотенуза(боковая сторона =6) высота-это катет,лежащий против угла в 30 гр,значит, высота равна 1/2 гипотенузы=3 площадь параллелограмма=произведению основания на высоту,проведённую к этому основанию, значит площадь равна 3*10=30 см^2 ответ:30 см^2
№1. Из условия видим, что диагональ BD делит ромб на два правильные треугольника ABD и CBD. Можно по теоремме пифагора найти высоту этих треуг-ков, а затем их площадь, но для равностороннего треуг-ка есть такая формула площади:
S=(√3/4)*a^2
S=√3/4*10=2√3/5=0,7см^2
№2. Сторона правильного шестиугольника равна радиусу описанной около него окружности, поэтому r=6см.
Длина окр-ти l=2Пr=2*3,14*6=37,68см
S=Пr^2=3,14*36=113,04см^2
№3. Что-то не понял условие. Дан прямоугольный треугольник и найти радиус вписанного треугольника. Радиус вписанной окружности нужно найти.
r=S/p, где р-полупериметр. Так как острый угол 45, то катеты равны.
в параллелограмме противолежащие стороны равны
значит 32-6-6=20 (сумма 2-х противолежащих сторон) вторая сторона =10 см
проведём высоту, один из углов=150 гр,значит второй соседний равен 30 гр, рассмотрим прямоугольный треугольник, гипотенуза(боковая сторона =6) высота-это катет,лежащий против угла в 30 гр,значит, высота равна 1/2 гипотенузы=3
площадь параллелограмма=произведению основания на высоту,проведённую к этому основанию, значит площадь равна 3*10=30 см^2
ответ:30 см^2
№1. Из условия видим, что диагональ BD делит ромб на два правильные треугольника ABD и CBD. Можно по теоремме пифагора найти высоту этих треуг-ков, а затем их площадь, но для равностороннего треуг-ка есть такая формула площади:
S=(√3/4)*a^2
S=√3/4*10=2√3/5=0,7см^2
№2. Сторона правильного шестиугольника равна радиусу описанной около него окружности, поэтому r=6см.
Длина окр-ти l=2Пr=2*3,14*6=37,68см
S=Пr^2=3,14*36=113,04см^2
№3. Что-то не понял условие. Дан прямоугольный треугольник и найти радиус вписанного треугольника. Радиус вписанной окружности нужно найти.
r=S/p, где р-полупериметр. Так как острый угол 45, то катеты равны.
Пусть один катет равен х, тогда
x^2+x^2=100
2x^2=100
x^2=50
x=√50=5√2см
S=1/2*5√2*10=25√2см^2
p=(10+5√2+5√2)/2=5+5√2см
r=25√2/(5+5√2)=5√2/(1+√2)=2,93см