Для построения нам понадобится знание некоторых фактов.
1. расстояние от вершины C треугольника ABC до точек касания вписанной окружности со сторонами AC и BC равно p-c, где p - полупериметр, а c=AB. Тем самым, это расстояние равно
p-c=(a+b-c)/2=(m-c)/2
2. Расстояние от вершины C треугольника ABC до точек касания вневписанной окружности с продолжениями сторон AC и BC равно p. Тем самым, это расстояние равно
p=(a+b+c)/2=(m+c)/2
Дальше все просто. Рисуем прямой угол с вершиной C, откладываем на сторонах угла отрезки (m-c)/2 - получаем точки A' и B'. Центр I вписанной окружности будет четвертой вершиной квадрата A'CB'I. Рисуем эту окружность. Далее аналогично рисуем еще один квадрат - A''CB''J со стороной (m+c)/2; J - центр вневписанной окружности. Рисуем эту окружность. Остается провести общую внутреннюю касательную для нарисованных окружностей, она отсечет от угла с вершиной C нужный треугольник ABC.
Замечание 1. Что означает метод спрямления - мне неизвестно. Если я случайно именно им и воспользовался - прекрасно. Если мой метод не подойдет - жалуйтесь начальству))
Замечание 2. Как рисовать общие касательные для двух окружностей - тема отдельного вопроса. Готов ответить на него за минимальное количество или бесплатно в комментариях
АС = BD
2. Диагонали прямоугольника точкой пересечения делятся пополам (свойство параллелограмма)
AO=BO=CO=DO
Значит, треугольника АОВ - равнобедренный с равными боковыми сторонами АО и ВО.
3. Углы при основании равнобедренного треугольника равны (свойство равнобедренного треугольника):
угол АВО = углу ВАО
4. Угол AOD - внешний угол треугольника АОВ. Градусная мера внешнего угла треугольника равна сумме двух внутренних углов этого треугольника, не смежных с ним:
∠AOD = ∠ABO + ∠BAO = 36° + 36° = 72°
1. расстояние от вершины C треугольника ABC до точек касания вписанной окружности со сторонами AC и BC равно p-c, где p - полупериметр, а c=AB. Тем самым, это расстояние равно
p-c=(a+b-c)/2=(m-c)/2
2. Расстояние от вершины C треугольника ABC до точек касания вневписанной окружности с продолжениями сторон AC и BC равно p. Тем самым, это расстояние равно
p=(a+b+c)/2=(m+c)/2
Дальше все просто. Рисуем прямой угол с вершиной C, откладываем на сторонах угла отрезки (m-c)/2 - получаем точки A' и B'. Центр I
вписанной окружности будет четвертой вершиной квадрата A'CB'I. Рисуем эту окружность. Далее аналогично рисуем еще один квадрат - A''CB''J со стороной (m+c)/2; J - центр вневписанной окружности. Рисуем эту окружность. Остается провести общую внутреннюю касательную для нарисованных окружностей, она отсечет от угла с вершиной C нужный треугольник ABC.
Замечание 1. Что означает метод спрямления - мне неизвестно. Если я случайно именно им и воспользовался - прекрасно. Если мой метод не подойдет - жалуйтесь начальству))
Замечание 2. Как рисовать общие касательные для двух окружностей - тема отдельного вопроса. Готов ответить на него за минимальное количество или бесплатно в комментариях