В ∆ АВС ∠ВСА=90°, ∠САК=15°
Высота СН=1. Найти АВ.
-----------
СН - высота ∆ ВСА и равна 1 по условию.
Отложим на продолжении ВС отрезок СК=ВС.
Соединим К и А.
СК=СВ, угол КСА=углу ВСА=90° (смежный).
В прямоугольных ∆ АВС и ∆ АКС катеты СК=СВ по построению, АС - общий.
∆ АСВ=∆ АСК по двум катетам =>
АК=АВ,
Треугольник АВК равнобедренный.
Угол КАС=углу САВ, следовательно, угол КАВ=2•15°=30°
Опустим перпедникуляр КМ на АВ
В прямоугольном ∆ ВКМ отрезки КС=ВС по построению. =>
С - середина отрезка ВК.
СН высота и перпендикулярна АВ, отрезок КМ перпендикулярен АВ по построению, поэтому СН║КМ, следовательно, СН- средняя линия ∆ ВКМ.=>
КМ=2СН=2.
∠КАМ=∠САВ+∠САК=30°
В прямоугольном ∆ КАМ катет КМ противолежит углу 30° и равен половине гипотенузы ( свойство).
АК=2КМ=4 ед. длины.
Гипотенуза АВ=АК=4 ед. длины - это ответ
OC ⊥ BM ( OC ⊥ BC ,где O центр малой окружности , BC касательная) ⇒ AM | | OC . MC/CB= AO/OB (обобщенная теорема Фалеса) .
2,4 /4 =r/(2R -r) ⇔ r=3R/4 (1) .
Из ΔBCO по теореме Пифагора :
OB² - OC² =BC² ;
(2R -r)² - r² = 4² ⇔ 4R(R-r) =16 ⇔ R(R-r) =4 (2).
R(R -3R/4) =4 ⇒ R =4. ⇒ r=3R/4 = 3.
AD =AC+CD.
AM =√(AB² -BM²) =√((2R)² -(MC+CB)² ) =√(8² -6,4²) =√(8 -6,4)(8 +6,4) =4,8.
AM можно вычислить по другому: AM/OC =MB/CB ⇔ AM/3 =6,4/4⇒
AM =4,8.
---
AC =√(BC² +AM²) =√(2,4² +4,8²) =√(2,4² +(2*2,4)²) = 2,4√5.
AC*CD = MC*BC ⇔ 2,4√5 *CD =2,4*4⇒ CD =4/√5 =4√5 / 5 =0,8√5.
AD =AC+CD= 2,4√5 + 0,8√5 =3,2√5 .
В ∆ АВС ∠ВСА=90°, ∠САК=15°
Высота СН=1. Найти АВ.
-----------
СН - высота ∆ ВСА и равна 1 по условию.
Отложим на продолжении ВС отрезок СК=ВС.
Соединим К и А.
СК=СВ, угол КСА=углу ВСА=90° (смежный).
В прямоугольных ∆ АВС и ∆ АКС катеты СК=СВ по построению, АС - общий.
∆ АСВ=∆ АСК по двум катетам =>
АК=АВ,
Треугольник АВК равнобедренный.
Угол КАС=углу САВ, следовательно, угол КАВ=2•15°=30°
Опустим перпедникуляр КМ на АВ
В прямоугольном ∆ ВКМ отрезки КС=ВС по построению. =>
С - середина отрезка ВК.
СН высота и перпендикулярна АВ, отрезок КМ перпендикулярен АВ по построению, поэтому СН║КМ, следовательно, СН- средняя линия ∆ ВКМ.=>
КМ=2СН=2.
∠КАМ=∠САВ+∠САК=30°
В прямоугольном ∆ КАМ катет КМ противолежит углу 30° и равен половине гипотенузы ( свойство).
АК=2КМ=4 ед. длины.
Гипотенуза АВ=АК=4 ед. длины - это ответ