Задание сводится к тому, чтобы провести окружность с центром в вершине угла и радиусом, равным четверти отрезка. Дано: угол О; отр АВ Построить ГМТ, равноудаленных от т О на расстояние равное 1/4 АВ
Построение: 1) точка А 2) окр1 (А; АВ) 3) окр2 (В, АВ) 4) окр1 пересек окр 2 в точках К и К1 5) КК пересекает АВ в точке М 6) окр3 (А; АМ) 7) окр4 (М; АМ) 8) окр 3 пересекает окр 4 в точках Р и Р 9) РР1 пересекает АВ в точке С, АС = 1/4 *АВ 10) окр5 (О; АС) - ГМТ, равноудаленных от вершины угла на расстояние 1/4*АВ.
Это же элементарно, нам дам прямоугольник, его диагональ, которая равна 25 см, и одна его сторона, которая равна 7, диагональ делит прямоугольник на 2 прямоугольных треугольника, которые ещё и равны между собой, рассмотрим 1 из них: его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24 То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника
Дано:
угол О;
отр АВ
Построить
ГМТ, равноудаленных от т О на расстояние равное 1/4 АВ
Построение:
1) точка А
2) окр1 (А; АВ)
3) окр2 (В, АВ)
4) окр1 пересек окр 2 в точках К и К1
5) КК пересекает АВ в точке М
6) окр3 (А; АМ)
7) окр4 (М; АМ)
8) окр 3 пересекает окр 4 в точках Р и Р
9) РР1 пересекает АВ в точке С, АС = 1/4 *АВ
10) окр5 (О; АС) - ГМТ, равноудаленных от вершины угла на расстояние 1/4*АВ.
его гипотенуза равна 25 (см), а 1 катет равен 7 (см), находим 2-й катет по теореме Пифагора: 25*25 (То есть 25 в квадрате) - 7*7 (7 в квадрате) = 625 - 49 = 576, а √576 = 24
То есть 24 (см) - это второй катет, и ещё одна сторона прямоугольника, ну и теперь путём несложным решений, (24+7)*2 = 62 (см) - это и есть периметр прямоугольника