Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
Нарисуем треугольник АВС.
Проведем в нем высоты АК и СМ.
По условию задачи они пересекаются под углом 110º.
1) Рассмотрим треугольник АМС.
Угол АМС =90º
Сумма острых углов в нем 90º, ∠А=70º по условию, следовательно,
∠ МСА=90º-70º=20º.
2)Рассмотрим треугольник АDС.
Так как ∠МСА=20 градусов,
то ∠DAC=180-110-20=50º.
3)Так как ∠ А=70º, а
∠КАС=50º,то ∠ВАК=70-50-20º
4)В прямоугольном треугольнике АВК ∠АКВ прямой, ∠ВАК=20º, следовательно, ∠В=90-20=70º
5) В треугольнике АВС ∠С=180-70-70=40º
ответ: Угол С=40º
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg