Обозначим трапецию АВСD. АВ перпендикулярна ВС и АD. Диаметр окружности, вписанной в трапецию, равен её высоте. Так как трапеция прямоугольная, ее высота равна стороне АВ=2r=8(см)
Примем меньшее основание равным х.
Опустим из вершины С высоту СН на большее основание. Тогда АН=ВC=х, АD=х+6, НD=6.
По т.Пифагора из ∆ СНD
СD=√(CH²+HD²)=√(64+36=10 (см)
Окружность можно вписать в четырехугольник тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник⇒
ВС+АD=АВ+СD
х+х+6=8+10
2х=12
х=6⇒ BC=6 см, AD=12 см
Площадь трапеции равна произведению высоты на полусумму оснований.
Все грани правильной пирамиды - равнобедренные треугольники.
Так как плоский угол при вершине равен 60º, то грани данной пирамиды - правильные треугольники, все её ребра равны.
Пусть ребро данной пирамиды равно а.
Тогда диагональ основания ( квадрата АВСД) равна а√2, а ее половина а:√2.
Площадь боковой поверхности равна сумме площадей её граней -четырех правильных треугольников со стороной а
Площадь правильного треугольника найдем по формуле
S=a²√3):4
Тогда площадь боковой поверхности
4S=a²√3
Рассмотрим треугольник АОМ.
Угол АОМ=90º, АО=АС/2=а:√2
По т.Пифагора
MO² =АМ²-AO²
16=а² -а²/2⇒
а²=32
4S=32√3 см² - площадь боковой поверхности.
Обозначим трапецию АВСD. АВ перпендикулярна ВС и АD. Диаметр окружности, вписанной в трапецию, равен её высоте. Так как трапеция прямоугольная, ее высота равна стороне АВ=2r=8(см)
Примем меньшее основание равным х.
Опустим из вершины С высоту СН на большее основание. Тогда АН=ВC=х, АD=х+6, НD=6.
По т.Пифагора из ∆ СНD
СD=√(CH²+HD²)=√(64+36=10 (см)
Окружность можно вписать в четырехугольник тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник⇒
ВС+АD=АВ+СD
х+х+6=8+10
2х=12
х=6⇒ BC=6 см, AD=12 см
Площадь трапеции равна произведению высоты на полусумму оснований.
S=8•((6+12):2=72 (см²)