Объяснение:
1 <3+<6=180 односторонние - ДА
2 <8=<4 соответственные - ДА
3 <5+<7=180 - НЕТ
4 <3= <5 - накрест лежащие - ДА
2
<1=78 градусов
<3=<1=78 градусов как вертикальные
<5=<1=78 градусов как соответственные
<8=180-<1=180-78=102 градуса как внешние односторонние
<7=<1=78 градусов как внешние накрест лежащие
<2=180-<7=180-78=102 градуса как внешние односторонние
<6=180-<3=180-78=102 градуса как внутренние односторонние
<4=<6=102 градуса как внутренние накрест лежащие
Sпол = 64(1+√3) см²
Sполн. = Sбок. + Sосн.
Так как основанием правильной четырёхугольной пирамиды является квадрат, то площадь основания вычисляется по формуле:
Sосн = а², а - сторона квадрата
Формула площади боковой поверхности правильной пирамиды (Sбок):
Sбок = ,
где Р - периметр основания, Р=4а, m-апофема (опущенный перпендикуляр SK из вершины S, на ребро основания DC)
Так как боковые грани – правильные треугольники, то высота SK является так же медианой: КС= DC/2 = а/2. Стороны SC=DC=SD=a.
∠SCD=∠SDC=∠DSC=60°.
SO⊥(ABC) ⇒ SO⊥OK - как высота пирамиды, SK⊥DC - апофема, ⇒OK⊥DC (по теореме о трёх ⊥). ОК= а/2
2. Рассмотрим прямоугольный треугольник SOK.
По теореме Пифагора:
3. Sполн. = а² + 2*a*m =
Объяснение:
1 <3+<6=180 односторонние - ДА
2 <8=<4 соответственные - ДА
3 <5+<7=180 - НЕТ
4 <3= <5 - накрест лежащие - ДА
2
<1=78 градусов
<3=<1=78 градусов как вертикальные
<5=<1=78 градусов как соответственные
<8=180-<1=180-78=102 градуса как внешние односторонние
<7=<1=78 градусов как внешние накрест лежащие
<2=180-<7=180-78=102 градуса как внешние односторонние
<6=180-<3=180-78=102 градуса как внутренние односторонние
<4=<6=102 градуса как внутренние накрест лежащие
Sпол = 64(1+√3) см²
Объяснение:
Площадь (S) полной поверхности пирамиды равняется сумме площади ее боковой поверхности и основания.Sполн. = Sбок. + Sосн.
Так как основанием правильной четырёхугольной пирамиды является квадрат, то площадь основания вычисляется по формуле:
Sосн = а², а - сторона квадрата
Формула площади боковой поверхности правильной пирамиды (Sбок):
Sбок = ,
где Р - периметр основания, Р=4а, m-апофема (опущенный перпендикуляр SK из вершины S, на ребро основания DC)
Так как боковые грани – правильные треугольники, то высота SK является так же медианой: КС= DC/2 = а/2. Стороны SC=DC=SD=a.
∠SCD=∠SDC=∠DSC=60°.
Рассмотрим прямоугольный треугольник SKC.SO⊥(ABC) ⇒ SO⊥OK - как высота пирамиды, SK⊥DC - апофема, ⇒OK⊥DC (по теореме о трёх ⊥). ОК= а/2
2. Рассмотрим прямоугольный треугольник SOK.
По теореме Пифагора:
3. Sполн. = а² + 2*a*m =