Углы, образованные при пересечении двух параллельных прямых секущей, или равны, или в сумме составляют 180°. Следовательно, нам дано значение одного из смежных углов.
а) второй угол равен 180° - 150° =30°.
б) один из углов равен Х градусов, второй - Х+70 градусов. Их сумма равна 2Х+70=180° => X=55°. Тогда меньший угол = 55°, второй = 125°.
Или (см. рисунок): а) <1=<4=<5=<8 =150°, <2=<3=<6=<7=30°.
Дано уравнение кривой: 5x² - 4y² + 30x + 8y + 21 = 0. Выделяем полные квадраты: 5(х + 3)² - 4(у² - 1)² = 20. Делим обе части уравнения на 20 и получаем каноническое уравнение гиперболы: ((х + 3)²/(2²)) - ((у² - 1)²/(√5)²) = 1. Данное уравнение определяет гиперболу с центром в точке: C(-3; 1) и полуосями: а = 2 и b = √5. Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами Определим параметр c: c² = a² + b² = 4 + 5 = 9. c = 3. Тогда эксцентриситет будет равен: ε = с/а = 3/2.
Асимптотами гиперболы будут прямые: у - 1 = (√5/2)(х + 3) и у - 1 = -(√5/2)(х + 3). Директрисами гиперболы будут прямые: х + 3 = а/ε , х + 3 = +-(2/(3/2)). х + 3 = +-(4/3).
График и таблица координат точек для его построения приведены в приложении.
Углы, образованные при пересечении двух параллельных прямых секущей, или равны, или в сумме составляют 180°. Следовательно, нам дано значение одного из смежных углов.
а) второй угол равен 180° - 150° =30°.
б) один из углов равен Х градусов, второй - Х+70 градусов. Их сумма равна 2Х+70=180° => X=55°. Тогда меньший угол = 55°, второй = 125°.
Или (см. рисунок): а) <1=<4=<5=<8 =150°, <2=<3=<6=<7=30°.
б) <1=<4=<5=<8 =125°, <2=<3=<6=<7=55°.
P.S.
<1=<4, <5=<8, <2=<3 и <6=<7 как вертикальные,
<4=<5 и <3=<6 как внутренние накрест лежащие.
5x² - 4y² + 30x + 8y + 21 = 0.
Выделяем полные квадраты:
5(х + 3)² - 4(у² - 1)² = 20.
Делим обе части уравнения на 20 и получаем каноническое уравнение гиперболы:
((х + 3)²/(2²)) - ((у² - 1)²/(√5)²) = 1.
Данное уравнение определяет гиперболу с центром в точке:
C(-3; 1) и полуосями: а = 2 и b = √5.
Найдем координаты ее фокусов: F1(-c;0) и F2(c;0), где c - половина расстояния между фокусами
Определим параметр c: c² = a² + b² = 4 + 5 = 9.
c = 3.
Тогда эксцентриситет будет равен: ε = с/а = 3/2.
Асимптотами гиперболы будут прямые:
у - 1 = (√5/2)(х + 3) и у - 1 = -(√5/2)(х + 3).
Директрисами гиперболы будут прямые:
х + 3 = а/ε ,
х + 3 = +-(2/(3/2)).
х + 3 = +-(4/3).
График и таблица координат точек для его построения приведены в приложении.