Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см
1) 2см
2) верно
3) 4см
Объяснение:
Для начала заметим, что AO = DO = CO = BO - это радиусы окружности.
Далее, угол AOD = угол COB - вертикальные.
Треугольник AOD = треугольнику COB (так как AO = OC, OD = OB и угол AOD = углу COB(первый признак равенства треугольников)), отсюда AD = BC = 2 см.
К тому же треугольники AOD и COB - равнобедренные, значит
угол OAD = угол ADO = угол OCB = угол OBC
Рассмотрим угол DAO = угол OBC - они накрест-лежащие и равны, значит AD параллельна CB
в) если угол AOD = 60 градусов, а мы выяснили, что треугольник AOD - равнобедренный то угол OAD = (180-60)/2 = 60 =угол ADO, следовательно треугольник ADO - равносторонний и AD = AO = OD, поэтому AO = AD = 2, но AO - радиус, значит диаметр равен AB = AO*2 = 2см*2=4 см
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².