Опустим из точки Д перпендикуляр к стороне АС, например перпендикуляр ДК. По условию треугольник АВС равносторонний значит угол А=60град. ДК- поусловию равно 6см. Треугольник АДК- прямоугольный, а угол ДАК равен 30град. (т.к. АД- по условию биссектриса). ДК- катет который лежит на против угла в 30град., а на против угла в 30град. лежит катет равный половине гипотенузы (по св-ву угла в 30 град. в прямоугольном треугольнике), значит гипотенуза АД в 2 раза больше катета ДК, т.е. АД=12см. (АД- это и есть расстояние от точки А до прямой ВС)
Вроде, всё просто. Треугольник равносторонний, значит, все углы равны 60 гр. Все медианы, проведённые к основаниям, являются биссектрисами и высотами. Расстояние от точки до прямой - это перпендикуляр, проведи от точки D к прямой AC, назови точку M. Получим прямоугольный треугольник ADM. Угол ACD равен 60:2=30 гр., т.к. AD - также биссектриса, против угла 30 гр. лежит катет, который равен половине гипотенузы, гипотенуза в этом треугольнике - AD (искомое расстояние). Чтобы его найти, нужно 6 разделить на , получим 12. ответ: расстояние от вершины A до прямой BC равно 12.
Опустим из точки Д перпендикуляр к стороне АС, например перпендикуляр ДК. По условию треугольник АВС равносторонний значит угол А=60град. ДК- поусловию равно 6см. Треугольник АДК- прямоугольный, а угол ДАК равен 30град. (т.к. АД- по условию биссектриса). ДК- катет который лежит на против угла в 30град., а на против угла в 30град. лежит катет равный половине гипотенузы (по св-ву угла в 30 град. в прямоугольном треугольнике), значит гипотенуза АД в 2 раза больше катета ДК, т.е. АД=12см. (АД- это и есть расстояние от точки А до прямой ВС)