Многоугольником называется фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины. Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине. Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника. Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О. Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°. В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360° Таким образом, сумма всех внутренних углов многоугольника равна n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Многоугольник называют выпуклым, если он лежит по одну сторону от каждой прямой,проходящей через две его соседние вершины.
Внутренним углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.
Теорема: Сумма внутренних углов выпуклого многоугольника равна (n-2)*180°, где n - число сторон многоугольника.
Доказательство: Внутри n-угольника возьмем произвольную точку О и соединим ее со всеми вершинами. Многоугольник разобьется на n треугольников с общей вершиной О.
Сумма внутренних углов каждого треугольника равна 180°, следовательно, сумма углов всех треугольников равна n*180°.
В эту сумму, помимо суммы всех внутренних углов многоугольника, входит сумма углов треугольников при вершине О, равная 360°
Таким образом, сумма всех внутренних углов многоугольника равна
n*180° - 360° = (n-2)*180°, что и требовалось доказать.
Определите периметр прямоугольника, если его диагональ равна 2√10 м, а площадь 12 м²
Вариант решения (если уже знакомы с теоремой косинусов)
Площадь параллелограмма, а прямоугольник, как известно, - параллелограмм, можно найти разными в том числе по формуле
S=0,5•d₁•d₂•sin α /2, где d₁и d₂ - диагонали, α- угол между ними.
В прямоугольнике диагонали равны, поэтому
S=0,5•d²•sin α
12=0,5•(2√10)²•sin α⇒
sin α=2S:d²=24: 40=0,6
sin²α+cos²α=1⇒
cos α=√(1-0,36)=0,8
Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними
Эта формула позволяет вычислить длину одной из сторон треугольника по данным длинам двух других сторон и величине угла, лежащего против неизвестной стороны.
Пусть данный прямоугольник АВСД, и О – точка пересечения его диагоналей.
АВ²=ВО²+АО²-2•BO•AO•cos α
В прямоугольнике диагонали равны и точкой пересечения делятся пополам, поэтому АО=ВО=d/2=√10⇒
Тогда
AB²=10+10-2•(√10)•(√10)•0,8⇒
АВ²=4
АВ=СД=2 м
Из другой формулы площади прямоугольника
S=a•b найдем вторую сторону:
S=АД•AB
12=АД•2
ВС=АД=12:2=6 м
Р=2(AB+BC)=16 м