Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора:
Вектор - це напрямлений відрізок, тобто відрізок, який має довжину і певний напрямок. Графічно вектори зображуються у вигляді напрямлених відрізків прямої певної довжини.
Довжина напрямленого відрізка визначає числове значення вектора і називається довжиною вектора або модулем вектора AB.
Для позначення довжини вектора використовують дві вертикальні лінії зліва і справа |AB|.
Вектори, паралельні одній прямій або які лежать на одній прямій називають колінеарними векторами
Два колінеарних вектора a і b називаються Співнаправленими векторами, якщо їх напрямки співпадають: a↑↑b
Додавання векторів (сума векторів) a + b - це операція знаходження вектора c, всі елементи, якого дорівнюють попарній сумі відповідних елементів векторів a і b, тобто кожен елемент вектора c дорівнює:
с = a + b(це вектори, просто додаються)
Властивості:
Формули додавання і віднімання векторів для плоских задач
У випадку плоскої задачі суму та різницю векторів a = {ax ; ay} і b = {bx ; by} можна знайти скориставшись наступними формулами:
a + b = {ax + bx; ay + by}
a - b = {ax - bx; ay - by}
Формули додавання і віднімання векторів для просторових задач
У випадку просторової задачі суму та різницю векторів a = {ax ; ay ; az} і b = {bx ; by ; bz} можна знайти скориставшись наступними формулами:
a + b = {ax + bx; ay + by; az + bz}
a - b = {ax - bx; ay - by; az - bz}
Формули додавання і віднімання n -вимірних векторів
У випадку n -вимірного простору суму та різницю векторів a = {a1 ; a2 ; ... ; an} і b = {b1 ; b2 ; ... ; bn} можна знайти скориставшись наступними формулами:
a + b = {a1 + b1; a2 + b2; ... ; an + bn}
a - b = {a1 - b1; a2 - b2; ... ; an - bn}
Скалярним добутком двох векторів a і b буде скалярна величина, яка дорівнює добутку модулів цих векторів помноженому на косинус кута між ними:
a · b = |a| · |b| cos α(над векторами ще мають бути рисочки, просто в мене не виходить написати)
Скалярним добутком(інше визначення) двох векторів a і b буде скалярна величина, яка дорівнює сумі попарного добутку відповідних координат векторів a і b.
Властивості скалярного добутку векторів
Скалярний добуток вектора самого на себе завжди більше або дорівнює нулю:
a · a ≥ 0
Скалярний добуток вектора самого на себе дорівнює нулю тоді і тільки тоді, коли вектор дорівнює нульовому вектору:
a · a = 0 <=> a = 0
Скалярний добуток вектора самого на себе дорівнює квадрату його модуля:
a · a = |a|2
Операція скалярного добутку комутативна:
a · b = b · a
Якщо скалярний добуток двох не нульових векторів дорівнює нулю, то ці вектори ортогональні:
a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b
(αa) · b = α(a · b)
Операція скалярного добутку дистрибутивна:
(a + b) · c = a · c + b · c
Проекцією вектора AB на вісь l називається число, що дорівнює величині відрізку AlBl вісі l, де точки Al і Bl є проекціями точок A і B на вісь l.
Проекцією вектора a на напрямок вектору b , називається число, яке дорівнює величині проекції вектора a на вісь, що проходить через вектор b.
Малюнок прикріплено)
Тема 15
Система координат б задання точок простору за до чисел. Кількість чисел, необхідних для однозначного визначення будь-якої точки простору, визначає його вимірність. Ці числа називають координатами. Координати на площині і в тривимірному просторі можна задавати багатьма різними
Малюнок прикріплено)
Формула для знаходження відстані між двома точками прикріплена)
Объяснение:
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
4) Тогда в ΔABC сторона AC = x + 0,5 км.
Из ΔABC найти BC можно двумя
По теореме Пифагора:
Тема 14
Вектор - це напрямлений відрізок, тобто відрізок, який має довжину і певний напрямок. Графічно вектори зображуються у вигляді напрямлених відрізків прямої певної довжини.
Довжина напрямленого відрізка визначає числове значення вектора і називається довжиною вектора або модулем вектора AB.
Для позначення довжини вектора використовують дві вертикальні лінії зліва і справа |AB|.
Вектори, паралельні одній прямій або які лежать на одній прямій називають колінеарними векторами
Два колінеарних вектора a і b називаються Співнаправленими векторами, якщо їх напрямки співпадають: a↑↑b
Додавання векторів (сума векторів) a + b - це операція знаходження вектора c, всі елементи, якого дорівнюють попарній сумі відповідних елементів векторів a і b, тобто кожен елемент вектора c дорівнює:
с = a + b(це вектори, просто додаються)
Властивості:
Формули додавання і віднімання векторів для плоских задач
У випадку плоскої задачі суму та різницю векторів a = {ax ; ay} і b = {bx ; by} можна знайти скориставшись наступними формулами:
a + b = {ax + bx; ay + by}
a - b = {ax - bx; ay - by}
Формули додавання і віднімання векторів для просторових задач
У випадку просторової задачі суму та різницю векторів a = {ax ; ay ; az} і b = {bx ; by ; bz} можна знайти скориставшись наступними формулами:
a + b = {ax + bx; ay + by; az + bz}
a - b = {ax - bx; ay - by; az - bz}
Формули додавання і віднімання n -вимірних векторів
У випадку n -вимірного простору суму та різницю векторів a = {a1 ; a2 ; ... ; an} і b = {b1 ; b2 ; ... ; bn} можна знайти скориставшись наступними формулами:
a + b = {a1 + b1; a2 + b2; ... ; an + bn}
a - b = {a1 - b1; a2 - b2; ... ; an - bn}
Скалярним добутком двох векторів a і b буде скалярна величина, яка дорівнює добутку модулів цих векторів помноженому на косинус кута між ними:
a · b = |a| · |b| cos α(над векторами ще мають бути рисочки, просто в мене не виходить написати)
Скалярним добутком(інше визначення) двох векторів a і b буде скалярна величина, яка дорівнює сумі попарного добутку відповідних координат векторів a і b.
Властивості скалярного добутку векторів
Скалярний добуток вектора самого на себе завжди більше або дорівнює нулю:
a · a ≥ 0
Скалярний добуток вектора самого на себе дорівнює нулю тоді і тільки тоді, коли вектор дорівнює нульовому вектору:
a · a = 0 <=> a = 0
Скалярний добуток вектора самого на себе дорівнює квадрату його модуля:
a · a = |a|2
Операція скалярного добутку комутативна:
a · b = b · a
Якщо скалярний добуток двох не нульових векторів дорівнює нулю, то ці вектори ортогональні:
a ≠ 0, b ≠ 0, a · b = 0 <=> a ┴ b
(αa) · b = α(a · b)
Операція скалярного добутку дистрибутивна:
(a + b) · c = a · c + b · c
Проекцією вектора AB на вісь l називається число, що дорівнює величині відрізку AlBl вісі l, де точки Al і Bl є проекціями точок A і B на вісь l.
Проекцією вектора a на напрямок вектору b , називається число, яке дорівнює величині проекції вектора a на вісь, що проходить через вектор b.
Малюнок прикріплено)
Тема 15
Система координат б задання точок простору за до чисел. Кількість чисел, необхідних для однозначного визначення будь-якої точки простору, визначає його вимірність. Ці числа називають координатами. Координати на площині і в тривимірному просторі можна задавати багатьма різними
Малюнок прикріплено)
Формула для знаходження відстані між двома точками прикріплена)
Рівняння прямої і кола також прикріплено)