) Что можно утверждать о прямой, две точки которой принадлежат данной плоскости?
2) Точки А и В принадлежат плоскости α, а точка С лежит вне плоскости α. Укажите, какие из приведенных утверждений правильные, а какие — неправильные:
а) прямая АС лежит в плоскости α;
б) прямая СВ не лежит в плоскости α;
в) прямая АВ лежит вне плоскости α;
г) прямая АВ лежит в плоскости α.
1) KL и NK смежные стороны, LN - диагональ
2) KN и LN смежные стороны, KL - диагональ
3) KL и LN смежные стороны, KN - диагональ
Решение:
1) Так как диагонали параллелограмма пересекаясь точкой пересечения делятся пополам, то найдем середину известной диагонали, а затем по известной середине и одному из концов найдем другой конец:
Середина:
Искомая вершина:
Получили вершину (7: 6)
2) Зная что середина получим:
Аналогично:
Получили вершину: (-1; 2)
3)
Получили вершину: (3; -2)
ответ: (7: 6); (-1; 2); (3; -2)
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см