Цилиндр описан около прямой призмы, в основании которой прямоугольный треугольник с катетами длиной 6 см и 10 см.
Известно, что диагональ большей грани призмы образует с плоскостью основания угол величиной 45 градусов.
Определи площадь полной поверхности цилиндра.
ответ: cos B - 12/13
sin B-5/13
tg B-5/12
ctg B-12/5
Объяснение:
Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.
Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.
Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.
Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.
P.s
Постараюсь русским языком объяснить. BA- гипотенуза, она равна 13 см. ВС- это катет прилегающий катет, равен 12 см. СА это противолежащий катет,равен 5 см. И теперь по выписанным значениям делаем.
А если у нас угол А был бы,то CA был прилегающим катетом. А ВС противолежащим катетом.
Надеюсь понятно объяснил.
Объяснение:
Дано:
Окружность с центром в точке О;
Дуга ED=60°;
ED=7 см.
Найти: длину окружности.
Проведем ЕО.
Угол ЕОF – центральный и опирается на дугу EF, тогда угол EOF=дуга EF=60°.
Угол DOE=180°–угол EOF=180°–60°=120° (смежные углы)
DO=EO так как радиусы равны, следовательно ∆ЕОD – равнобедренный с основанием ED.
Углы при основании равнобедренного треугольника равны, тогда угол DEO=угол ODE=(180°–угол DOE)÷2=(180°–120°)÷2=60°÷2=30°.
По теореме синусов в ∆EOD:
DO – радиус окружности.
C=2πr, где С – длина окружности; r – радиус окружности.
ответ: 24,2 см.