Сумма углов выпуклого многоугольника находится по формуле: N=180°• (n – 2), где N - сумма углов, n - их количество ( а, значит, и число сторон многоугольника). Но известно, что сумма внешних углов выпуклого многоугольника равна 360°, причем, с каждым внутренним углом внешний составит в сумме развернутый угол, т.е. 180°. Очевидно, что сумма всех внутренних и внешних углов кратна числу 180°. Тогда число сторон данного выпуклого многоугольника (2160°+360°):180°=14
Теперь вычислим то же число по формуле: 2160°=180°• (n – 2), 2160°=180°•n-360 180°•n=2160°+360°⇒ n=2520°:180°=14 (сторон)
N=180°• (n – 2), где N - сумма углов, n - их количество ( а, значит, и число сторон многоугольника).
Но известно, что сумма внешних углов выпуклого многоугольника равна 360°, причем, с каждым внутренним углом внешний составит в сумме развернутый угол, т.е. 180°.
Очевидно, что сумма всех внутренних и внешних углов кратна числу 180°.
Тогда число сторон данного выпуклого многоугольника
(2160°+360°):180°=14
Теперь вычислим то же число по формуле:
2160°=180°• (n – 2),
2160°=180°•n-360
180°•n=2160°+360°⇒
n=2520°:180°=14 (сторон)
Объяснение:
Внешний угол смежен с внутренним углом, с которым у него общая вершина. Сумма смежных углов равна 180°
Тогда угол КВС=180°–угол САВ=180°–32°=148°
RB – биссектриса угла КВС по условию.
Следовательно угол КВR=угол КВС÷2=148°÷2=74°
Так как RB//AC по условию, то угол ВАС =угол KBR=74° как соответственные углы при параллельных прямых RB u AC и секущей АК.
Так как в задании не указана последовательность углов А и С, найду второй угол.
Сумма углов в любом треугольнике равна 180°
Тогда угол ВСА=180°–угол ВАС–угол СВА=180°–74°–32°=74°.
Получилось что углы А и С равны, тогда неважно в какой последовательности они записаны.
ответ: угол САВ=74°