Цилиндр вписан в конус с образующей l = 3 см. Прямая, проведенная через центр верхнего основания цилиндра и любую точку окружности основания конуса, образует с основанием конуса угол 30 °. Угол образующей конуса с высотой конуса равен 45 °.
С точностью до сотых определи радиус цилиндра r.
ответ: r≈
см
Вроде была там формула какая-то про площадь равностороннего треугольника, но я ее не вспомнил, поэтому ну ее =)
Опускаем из вершины высоту. Длинну энтой высоты обозначим за Х. Второй катет есть равен 6 И гипотенуза равна 12 Тогда Х = SQRT (108) т.е. корень квадратный из 108.
Дальше множим эту высоту на диаметр и делим на два (так как треугольник). В итоге получим что площадь равна 18 SQRT (3) Под б)
Честно говоря забыл как вычислять площадь кругового сектора поэтому поступим по хитрому =)
Зная что площадь ВСЕГО конуса вычисляется по формуле S1 = пR(R + L) Где R - радиус основания, а L образующая вычислим плозадь всего и отнимим от нее площадь основания (жесть так делать конечно =) ), которое вычисляется соответственно по формуле S2 = п R^2
S1 = п 6 (6 + 12) = 108 п
S2 = п 6^2 = п 36
S = 72 п
Верны 1 и 3 утверждение.
2. Проведем высоты трапеции ВН и СК. ВСКН - прямоугольник, значит
НК = ВС = 4
ΔАВН = ΔDCK по гипотенузе и катету (АВ = CD так как трапеция равнобедренная, ВН = СК как высоты), ⇒
АН = DK = (AD - HK)/2 = (14 - 4)/2 = 5
АК = АН + НК = 5 + 4 = 9
ΔCKD: по теореме Пифагора
СК = √(CD² - KD²) = √(169 - 25) = √144 = 12
ΔАСК: по теореме Пифагора
АС = √(АК² + СК²) = √(81 + 144) = √225 = 15
3.
Угол, соответствующий большей дуге АВ:
360° - 45° = 315°
315° / 45° = 7 - он в 7 раз больше угла, соответствующего меньшей дуге.
Значит и длина большей дуги в 7 раз больше:
91 · 7 = 637