подставляем координаты точек В D и С 2а-d=0 4b-d=0 3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2) нормализуем уравнение плоскости. коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0 расстояние до точки (1;0;0) подставляем в уравнение 2/к- 4/к = -2/к = -2√18/√115=-6√230/115 расстояние модуль этого числа 6√230/115. рисунок есть у ранее решившего :)
координаты точек
А(0;0;0)
В(2;0;0)
С(0;4;0)
D(3;3;3√2). x=y≠6*cos(60) z=√(36-18)
уравнение плоскости BDC
ax+by+cz-d=0
подставляем координаты точек В D и С
2а-d=0
4b-d=0
3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2)
нормализуем уравнение плоскости.
коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0
расстояние до точки (1;0;0)
подставляем в уравнение
2/к- 4/к = -2/к = -2√18/√115=-6√230/115
расстояние модуль этого числа 6√230/115.
рисунок есть у ранее решившего :)
ответ ниже, вместе с объяснением
Объяснение:
1)Если рассмотрим e и его координаты, то получится, что m=-2, n=3, p=1.
Дальше действуем по известным формулам, x=mt+x0; y= nt+y0; z=pt+z0. Получаем: x=-2t+1
y= 3t+2
z= t-3
2) Сперва нужно найти координаты отрезка А1А2= (3+2, 4-1, -1-3)=(5,3,4)
Получается, m=5, n=3, p=4
Отсюда создаем уравнения: x= -2+5t
y= 1+3t
z= 3-4t
Это получится, если мы возьмем первую точку, но также можно взять и вторую точку, тогда выйдет: x= 3+5t
y= 4+3t
z= -1-4t
Как видишь, мы подставляем в основное уравнение нужные данные. Координаты вектора - это m,n,p, а координаты одной из точек- это x,y и z:)