CРОЧНО Варіант 1
1. Чи лежать точки А, В, С на одній прямій, якщо А(1;1;-3), В (-1;3;5), С (0;2;1)?
( )
2. Точки А (3; 1; 8), В (4; 7; 1), С(3; 5; -8) — вершини паралелограма ABCD.
Знайдіть координати вершини D. ( )
3. Знайдіть координати точки, симетричної середині відрізка АВ відносно
площини хz, якщо А (5; - 2; 1), В (5; 3; 6). ( )
4. На осі аплікат знайдіть точку А, рівновіддалену від точок В(-2;3;5) і С(3;-5;1).
( )
Варіант 2
1. Чи лежать точки А, В, С на одній прямій, якщо А (1;0;0), В (1;2;2) і С (2;2;2)?
( )
2. Точки А (4; 2; -1), C(-4; 2; 1), D(7; -3; 4) — вершини паралелограма ABCD.
Знайдіть координати вершини В. ( )
3. Знайдіть координати точки, симетричної середині відрізка АВ відносно
площини ху, якщо А (8; -3; 4), В (8; 7; 8). ( )
4. На осі абсцис знайдіть точку А, яка рівновіддалена від точок В (1; 2; 2) і
С (-2; 1; 4). ( )
Варіант З
1. Чи лежать точки А (2; 1; 3), В (1; 1; 4), С(0; 1; 3) на одній прямій? ( )
2. Точки В (1; 1; -3), С (-2; 0; 5), D (-1; 3; 4) — вершини паралелограма ABCD.
Знайдіть координати вершини А. ( )
3. Точка M(2; 6; 3) — середина відрізка, кінці якого знаходяться на осі х і в
площині уz. Знайдіть координати кінців відрізка. ( )
4. На осі ординат знайти точку С, рівновіддалену від точок А (-2;3;1) і В(1;2;-4).
( )
Варіант 4
1. Чи лежать точки А (2; 1; 3), В (2; 1; 5) , С(0; 1; 1) на одній прямій? ( )
2. Точки А (-4;-8; 8), В (-2; -2; 6), D (2; -6; -8) — вершини паралелограма ABCD.
Знайдіть координати вершини С. ( )
3. Кінці відрізка знаходяться на осі z і в площині ху. Знайдіть координати кінців
відрізка, якщо точка M(2; 8; 5) — середина відрізка. ( )
4. На осі аплікат знайти точку С, рівновіддалену від точок А (1;1;7) і В(3;-4;-4).
( )
5 см
Объяснение:
1) Опустим перпендикуляр из точки М на сторону АС.
МК - кратчайшее расстояние от М до АС, равное согласно условию задачи, 2√13 см.
2) Так как МВ перпендикулярно плоскости треугольника АВС, то МВ⊥ВК - проекции МК на плоскость АВС, ∠МВК - прямой, ВК⊥АС, ВК - высота ΔАВС.
3) Находим ВК как высоту правильного треугольника АВС:
ВК = (a√3)/2, где а - сторона правильного треугольника; а = 6 см, согласно условию задачи;
ВК = (a√3)/2 = (6√3)/2 = 3√3 см
4) В прямоугольном треугольнике МВК:
МВ и ВК являются катетами, а МК - является гипотенузой.
Согласно теореме Пифагора:
МВ² = МК² - ВК²
МВ² = (2√13)² - (3√3)² = (4·13 - 9·3) = 52-27 = 25
МВ = √25 = 5 см
ответ: 5 см
6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.