средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
ответ:
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см