В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Діагональ осьового перерізу циліндра дорівнює 29см, а радіус основи циліндра на 11 см менший за висоту. знайдіть площу осьового перерізу циліндра.

будь-ласка і!

я 27 і!

Показать ответ
Ответ:
ланя2
ланя2
24.10.2020 20:40
8.1 Площадь равнобедренной трапеции равна:
S=(a+b)/2*h, где
a и b - основания трапеции (11 и 27)
h - высота
Отсюда, высота равна:
h=S:(a+b)/2=2S:(a+b)=2*285:(11+27)=225:38=15
Т.е. BE (см. рисунок 1) = 15
AE=FD=(27-11):2=16:2=8
По теореме Пифагора:
AB²=BE²+AE²=15²+8²=225+64=289
AB=√289=17
Боковая сторона трапеции равна 17. Т.к. трапеция равнобедренная, то боковые стороны равны: AB=CD=17
Периметр — это сумма боковых сторон и оснований, который равен:
Р=11+27+17+17=72
ответ: периметр равен 72.

8.2. Найти высоту правильного треугольника, если радиус описанной около него окружности, равен 10 см.

R=10

т.к. ΔАВС - равносторонний, следовательно ∠А=∠В=∠С=60°

R=a/2sin60=a/√3 

тогда a=R√3=10√3

h=√3/2*a=√3*a/2=√3*10√3/2=√9*10/2=3*10/2=15
ответ: высота правильного треугольника равна 15

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках Mи Nсоответственно. Найдите BN, если MN=13, AC=65, NC=28.
Пусть х - длина ВN.
Тогда, ВС=х+32
Составим и решим пропорцию:
MN:AC=BN:BC
 17/51=х/(х+32) (умножим на 51, чтобы избавиться от дроби)
17=51х/(х+32)
17*(x+32)=51x
17x+544=51x
17x-51x=-544
-34x=-544
34x=544
x=16
ответ: BN=16

8.1 площадь равнобедренной трапеции равна 285. найдите периметр этой трапеции, если ее основания рав
0,0(0 оценок)
Ответ:
an2015tep071hf
an2015tep071hf
24.10.2020 20:40
1. Формула диагонали прямоугольника через 2 стороны прямоугольника (по теореме Пифагора): 2. Формула диагонали прямоугольника через площадь и сторону: 3. Формула диагонали прямоугольника через периметр и сторону: 4. Формула диагонали прямоугольника через радиус окружности (описанной):d = 2R 5. Формула диагонали прямоугольника через диаметр окружности (описанной):d = Dо 6. Формула диагонали прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула диагонали прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны, которая прилегает к этому углу: 8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Признаки прямоугольника. Параллелограмм - это прямоугольник, если выполняются условия:- Если диагонали его имеют одинаковую длину.- Если квадрат диагонали параллелограмма равняется сумме квадратов смежных сторон.- Если углы параллелограмма имеют одинаковую величину. Стороны прямоугольника. Длинная сторона прямоугольника является длиной прямоугольника, а короткая - ширина прямоугольника. Формулы для определения длин сторон прямоугольника: 1. Формула стороны прямоугольника (длина и ширина прямоугольника) через диагональ и еще одну сторону: 2. Формула стороны прямоугольника (длина и ширина прямоугольника) через площадь и еще одну сторону: 3. Формула стороны прямоугольника (длина и ширина прямоугольника) через периметр и еще одну сторону: 4. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол α:a = d sinαb = d cosα 5. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол β: Окружность, описанная вокруг прямоугольника. Окружность, описанная вокруг прямоугольника - это круг, который проходит сквозь 4-ре вершины прямоугольника, с центром на пересечении диагоналей прямоугольника. Формулы определения радиуса окружности описанной вокруг прямоугольника: 1. Формула радиуса окружности, которая описана около прямоугольника через 2-е стороны: 2. Формула радиуса окружности, которая описана около прямоугольника через периметр квадрата и сторону: 3. Формула радиуса окружности, которая описана около прямоугольника через площадь квадрата: 4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата: 5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной): 6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла: 8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Угол между стороной и диагональю прямоугольника. Формулы для определения угла между стороной и диагональю прямоугольника: 1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону: 2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями: Угол между диагоналями прямоугольника. Формулы для определения угла меж диагоналей прямоугольника: 1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:β = 2α 2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ:
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота