Діагональ перерізу циліндра, який паралельний його
осі, дорівнює 12 см і утворює з площиною основи кут
60°. переріз відтинає від кола основи дугу 60°. знайдіть:
1) висоту циліндра; 2) площу перерізу циліндра;
3) радіус циліндра; 4) довжину кола основи.
Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.
Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.
ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Угол при вершине равен 90 градусов,
<А=<В=90:2=45 градусов
Номер 12
Треугольник равнобедренный,углы при основании равны
<Р=<С=(180-40):2=70 градусов
Номер 13 зачеркнут человеком,который прислал задание
Номер 14
Треугольник равнобедренный,значит оба угла при основании равны
<М=<Е=50 градусов
Угол при вершине равен
180-50•2=80 градусов
Номер 13
Посмотрим на треугольник АВС,из его вершины В опустили на основание перпендикуляр,т к <АХВ=<ВХС=90 градусов
Также ,из вершины В опустили медиану,т к АХ=ХС
Проанализировав все данные про высоту,медиану и биссектрису в треугольниках,можем утверждать,что это ещё и биссектриса угла В
Биссектриса делит угол пополам
<АВХ=180-(40+90)=50 градусов
<С=180-(90+50)=40 градусов
Объяснение: