Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Рассмотрим один из треугольников, образованного пересечением диагоналей. Он прямоугольный и его катеты равны √3 и 1. По теореме Пифагора:
Значит, ⇒ ∠BAC = 30°, т.к. напротив угла в 30° лежит катет, равный половине гипотенузы. ∠BAD = 2 · 30° = 60°, т.к. диагонали ромба являются биссектрисами его углов. ∠ABO = 90° - 30° = 60° ∠ABC = 2 · 60° = 120° ∠ABC = ADC = 120° и ∠BAD = ∠BCD = 60° - как противоположные углы ответ: 60°, 120°, 60°, 120.°.
Задача 1
Решение(согласно моему рисунку)
1) Проведем высоту ВН.
2) Рассмотрим четырехугольник АВНД
Он будет параллелограммом, т.к. АВ || СД (как основания), а АД || ВН (т.к. высоты к одной стороне)
Тогда, т.к. АВНД - параллелограмм, АВ=ДН=6 см., АД=ВН (по св-ву параллелограмма)
3) Рассмотрим прямоугольный треугольника ВНС
НС=10 - 6=4 см.
Угол С=60° (по условию)
Тогда угол НВС=90° - 60°=30°.
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. Гипотенуза ВС=8 см. (это и будет большая боковая сторона)
ВС²=ВН² + НС² (теорема Пифагора)
ВН²=64 - 16
ВН²=48
ВН=4√3
4) ВН=АД=4√3, тогда АД=4√3 (это и будет меньшая боковая сторона)
ответ: АД=4√3 см., ВС=8 см.
Рассмотрим один из треугольников, образованного пересечением диагоналей.
Он прямоугольный и его катеты равны √3 и 1.
По теореме Пифагора:
Значит, ⇒ ∠BAC = 30°, т.к. напротив угла в 30° лежит катет, равный половине гипотенузы.
∠BAD = 2 · 30° = 60°, т.к. диагонали ромба являются биссектрисами его углов.
∠ABO = 90° - 30° = 60°
∠ABC = 2 · 60° = 120°
∠ABC = ADC = 120° и ∠BAD = ∠BCD = 60° - как противоположные углы
ответ: 60°, 120°, 60°, 120.°.