діагональ рівнобічної трапеції перпендикулярна до бічної сторони а з основою утворює кут 30 градусів. знайдіть периметр трапеціі якщо її більша основа дорівнюе 20 см.
ответ: а) ∠AKC, ∠CKB, ∠BKD, ∠DKA (это основные углы, так то образуются ещё два развёрнутых угла ∠AKB, ∠CKD)
б) вертикальные: ∠CKB и ∠DKA, ∠AKC и ∠BKD
смежные: ∠AKC и ∠CKB, ∠CKB и ∠BKD, ∠BKD и ∠DKA, ∠DKA и ∠AKC
с) если один из углов 134° , то вертикальный ему тоже 134° , а оставшиеся два смежные им, значит в сумме дают 180°, отсюда находим 180°-134°=46° и второй угол, вертикальный этому, тоже 46°
ответ: 134°, 134°, 46°, 46°
Примечание: Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Биссектриса "заканчивается" на противоположной стороне параллелограмма и образует с ней угол, который является внутренним накрест лежащим углом (при параллельных и секущей - самой биссектрисе) к одному из двух равных углов, на которые она делит угол при вершине. Поэтому в треугольнике, образованном биссектрисой, меньшей боковой стороной и частью большей боковой стороны, углы при биссектрисе равны. То есть это равнобедренный треугольник, и часть большей стороны параллелограмма равна меньшей стороне.
То же самое касается и второй биссектрисы.
Поэтому большая сторона в два раза больше меньшей.
ответ: а) ∠AKC, ∠CKB, ∠BKD, ∠DKA (это основные углы, так то образуются ещё два развёрнутых угла ∠AKB, ∠CKD)
б) вертикальные: ∠CKB и ∠DKA, ∠AKC и ∠BKD
смежные: ∠AKC и ∠CKB, ∠CKB и ∠BKD, ∠BKD и ∠DKA, ∠DKA и ∠AKC
с) если один из углов 134° , то вертикальный ему тоже 134° , а оставшиеся два смежные им, значит в сумме дают 180°, отсюда находим 180°-134°=46° и второй угол, вертикальный этому, тоже 46°
ответ: 134°, 134°, 46°, 46°
Примечание: Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.
Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.
Биссектриса "заканчивается" на противоположной стороне параллелограмма и образует с ней угол, который является внутренним накрест лежащим углом (при параллельных и секущей - самой биссектрисе) к одному из двух равных углов, на которые она делит угол при вершине. Поэтому в треугольнике, образованном биссектрисой, меньшей боковой стороной и частью большей боковой стороны, углы при биссектрисе равны. То есть это равнобедренный треугольник, и часть большей стороны параллелограмма равна меньшей стороне.
То же самое касается и второй биссектрисы.
Поэтому большая сторона в два раза больше меньшей.
ответ 36