Діагональ рівнобічної трапецій дорівнює з бічною стороною 90° Висота трапеції ділить її основу на відрізки довжиною 4 см та 9 см. Знайти периметер та площу трапеції
Пирамида правильная, следовательно, в основании лежит правильный треугольник. Площадь полной поверхности - площадь основания+площадь боковой поверхности. Площадь основания S(o) вычислим по формуле: S=(а²√3):4 S(о)=(9√3):4 Площадь боковой поверхности Sб - по формуле Sб=Р*(апофема):2 Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/ Апофему МН найдем из прямоугольного треугольника МОН. Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2 МО=ОН. ОН=r=(3√3):6=(√3):2 МН=(√3):2)*√2=(√3*√2):2 Р=3*3=9 Sб=9*(√3*√2):2):2=9*(√3*√2):4 см² Sполн=(9√3):4+(9*√3*√2):4 Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см² ---- bzs*
№1 не сказано какой треугольник, будем считать равносторонний АВС, АВ=ВС=АС, все углы=60, периметр треугольника=3*сторона=3*8=24, площадьАВС=1/2*АВ*ВС*sinB=1/2*8*8*корень3/2=64*корень3/4=16*корень3, радиус описанной = АВ*корень3/3=8*корень3/3, радиус вписанной=1/2радиус описанной=8*корень3/(3*2)=4*корень3/3, №2 КвадратАВСД, АВ=ВС=СД=АС=12, периметр=АВ*4=12*4=48, площадь=АВ в квадрате=12*12=144, радиус вписанной=АВ/2=12/2=6, радиус описанной=АВ*корень2/2=12*корень2/2=6*корень2 , №3 - задание не понятно, в квадрат вписана в окружность или квадрат описан около окружности , необходимо дополнительные пояснения
Площадь полной поверхности - площадь основания+площадь боковой поверхности.
Площадь основания S(o) вычислим по формуле:
S=(а²√3):4
S(о)=(9√3):4
Площадь боковой поверхности Sб - по формуле
Sб=Р*(апофема):2
Основание высоты МО правильной пирамиды перпендикулярно основанию и лежит в центре вписанной окружности/
Апофему МН найдем из прямоугольного треугольника МОН.
Т.к. грань наклонена к плоскости основания под углом 45, высота пирамиды равна радиусу вписанной в правильный треугольник окружности, а апофема МН, как гипотенуза равнобедренного прямоугольного треугольника, равна с=а√2, т.е.ОН*√2
МО=ОН.
ОН=r=(3√3):6=(√3):2
МН=(√3):2)*√2=(√3*√2):2
Р=3*3=9
Sб=9*(√3*√2):2):2=9*(√3*√2):4 см²
Sполн=(9√3):4+(9*√3*√2):4
Sполн=9√3)(1+√2):4 или 2,25*(1+√2) ≈ 5,43 см²
----
bzs*