Плоскость прямоугольника и плоскость АВК пересекаются по прямой АВ. Прямая СД принадлежит плоскости прямоугольника, но не пренадлежит плоскости АВК. Тут два варианта: либо она параллельна плоскости АВК, либо пепесекает ее. Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
1)Обозначим вершины ромба буквами латинского алфавита A, B, C и D для удобства обсуждения. Точку пересечения диагоналей традиционно обозначают буквой O. Длину ребра ромба обозначим буквой a. Величину угла BCD, который равен углу BAD, обозначим α. . 2)Найдем величину короткой диагонали. Так как диагонали пересекаются под прямым углом, то треугольник COD является прямоугольным. Половина короткой диагонали OD является катетом этого треугольника и может быть найдена через гипотенузу CD, а также угол OCD. Диагонали ромба являются также биссектрисами его углов, поэтому угол OCD равен α/2. Таким образом, OD = BD/2 = CD*sin(α/2). То есть, короткая диагональ BD = 2a*sin(α/2).
3)Аналогичным образом, из того, что треугольник COD прямоугольный, можем выразить величину OC (а это половина длинной диагонали). OC = AC/2 = CD*cos(α/2) Величина длинной диагонали выражается следующим образом: AC =2a*cos(α/2)
Теперь теоремма. Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна самой этой плоскости. Так как АВСД прямоугольник, то АВ парал. СД. Поскольку АВ принадлежит плоскости АВК, то прямая СД параллельна плоскости АВК на основании теореммы о параллельности прямой и плоскости.
.
2)Найдем величину короткой диагонали. Так как диагонали пересекаются под прямым углом, то треугольник COD является прямоугольным. Половина короткой диагонали OD является катетом этого треугольника и может быть найдена через гипотенузу CD, а также угол OCD.
Диагонали ромба являются также биссектрисами его углов, поэтому угол OCD равен α/2.
Таким образом, OD = BD/2 = CD*sin(α/2). То есть, короткая диагональ BD = 2a*sin(α/2).
3)Аналогичным образом, из того, что треугольник COD прямоугольный, можем выразить величину OC (а это половина длинной диагонали).
OC = AC/2 = CD*cos(α/2)
Величина длинной диагонали выражается следующим образом: AC =2a*cos(α/2)