1) Сумма углов любого треугольника равна 180градусов. От сбда можно сделать вывод, что третий угол равен: 180 - 88 - 53 = 39 2) т.к. сумма углов треугольника равна 180 и у равнобедренного треугольника углы при основании равны можно сделать так: (180 - 124) и потом это поделить на два = 28 ( это будет один угол) 3)т.к. сумма острых углов прямоугольного треугольника равна 90, то один угол x, другой x = 44 x + x+44 = 90 x = 23 4)Внешний угол треугольника равне сумме двух других, не смежных с ним то, пусть один из внутренних будет 2x, другой 3x 2x + 3x = 40 x = 8 3x = 3 * 8 = 24. Как то так)
Основание пирамиды - прямоугольный треугольник. Значит радиус основания конуса, как описанной окружности, равен половине гипотенузы вписанного треугольника.
Пусть это ∆ АВС∠С=90º∠А=30º
АС=2а
ГипотенузаАВ=АС:cos 30º=4a÷√3
R=АО=ВО=ОС=2a÷√3
Катет - ВС=2a÷√3 как противолежащий углу 30º
Угол между боковой гранью и плоскостью основания равен углу между перпендикулярами. Проведенными к точке О и М из точки К катета АС (МК - наклонная, ОК - ее проекция, МК и ОК перпендикулярны АС по т. о трех перпендикулярах). К - середина основания АС равнобедренного ∆ АОС
Так как угол ОКА=90º, ОК|| ВС и является средней линией ∆ АВС и равна половине ВС.
ОК=ВС:2=а/√3
Высота пирамиды МО перпендикулярна плоскости основания, угол МКО=45º по условию, и ∆ МОК - равнобедренный. МО=ОК=а÷√3
180 - 88 - 53 = 39
2) т.к. сумма углов треугольника равна 180 и у равнобедренного треугольника углы при основании равны можно сделать так:
(180 - 124) и потом это поделить на два = 28 ( это будет один угол)
3)т.к. сумма острых углов прямоугольного треугольника равна 90, то
один угол x, другой x = 44
x + x+44 = 90
x = 23
4)Внешний угол треугольника равне сумме двух других, не смежных с ним то,
пусть один из внутренних будет 2x, другой 3x
2x + 3x = 40
x = 8
3x = 3 * 8 = 24.
Как то так)
Нужно сначала найти радиус основания конуса.
Основание пирамиды - прямоугольный треугольник. Значит радиус основания конуса, как описанной окружности, равен половине гипотенузы вписанного треугольника.
Пусть это ∆ АВС∠С=90º∠А=30º
АС=2а
ГипотенузаАВ=АС:cos 30º=4a÷√3
R=АО=ВО=ОС=2a÷√3
Катет - ВС=2a÷√3 как противолежащий углу 30º
Угол между боковой гранью и плоскостью основания равен углу между перпендикулярами. Проведенными к точке О и М из точки К катета АС (МК - наклонная, ОК - ее проекция, МК и ОК перпендикулярны АС по т. о трех перпендикулярах). К - середина основания АС равнобедренного ∆ АОС
Так как угол ОКА=90º, ОК|| ВС и является средней линией ∆ АВС и равна половине ВС.
ОК=ВС:2=а/√3
Высота пирамиды МО перпендикулярна плоскости основания, угол МКО=45º по условию, и ∆ МОК - равнобедренный. МО=ОК=а÷√3
S осн. конуса=πR²=4π•a²÷3
V=[(4π•а²÷3)•a÷√3]:3=4π•a³÷√3 (ед. объема)
(изображение взято из других работ)