Третья сторона равна либо 2 см, либо 19 см (треугольник равнобедренный). Если третья сторона равна 2 см, то не выполняется неравенство треугольника. Неравенство треугольника: сумма длин любых двух сторон треугольника обязана быть больше третьей стороны, иначе такого треугольника не существует. При третьей стороне длиной 2 см, получаем 2см+2см = 4см < 19 см, и такого треугольника не существует. Если же третья сторона длиной 19 см, то 2см+19см = 21см>19 см, и 19см+19см = 38см>2 см. И такой треугольник существует. Периметр такого треугольника P = 19см+19см+2см = 38см+2см = 40см.
Если третья сторона равна 2 см, то не выполняется неравенство треугольника. Неравенство треугольника: сумма длин любых двух сторон треугольника обязана быть больше третьей стороны, иначе такого треугольника не существует. При третьей стороне длиной 2 см, получаем
2см+2см = 4см < 19 см, и такого треугольника не существует.
Если же третья сторона длиной 19 см, то
2см+19см = 21см>19 см, и
19см+19см = 38см>2 см. И такой треугольник существует.
Периметр такого треугольника P = 19см+19см+2см = 38см+2см = 40см.
для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см