Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
Пусть О₁ и O₂ - центры квадратов построенных на BC и AD соответственно, О - точка пересечения диагоналей трапеции, О' - точка пересечения AC и O₁O₂. Докажем, что О' совпадает с О. 1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны. 2) Значит треугольники O₁CO' и O₂AO' подобны (по двум углам), т.е. CO'/AO'=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD. 3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O' совпадает с O.
Найдите неизвестные углы параллелограмма ABCD если:
а) угол B= 130°
б) угол A + угол C = 140°
ответ: а) ∠ B = ∠ D =130°
∠ A = ∠ C = °50
- - - - - - - - - - - - - - - -
б ) ∠ A = ∠ C = ( ∠A + ∠ C) / 2 =140°/2 =70° ;
∠ B = ∠ D =180° -∠A =180° - 70° =110 °
Объяснение: Смежные углы параллелограмма в паре дают 180°, а противоположные его углы равны. Таким образом, зная любой один угол параллелограмма, можно найти значения всех остальных углов. α=180°- β
1) O₁C||O₂A, т.к. ∠O₁CA=45°+∠BCA, ∠O₂AC=45°+∠DAC, ∠DAC=∠BCA, т.е. внутр. накрест лежащие углы ∠O₁CA и ∠O₂AС равны.
2) Значит треугольники O₁CO' и O₂AO' подобны (по двум углам), т.е.
CO'/AO'=CO₁/AO₂=(BC/√2)/(AD/√2)=BC/AD.
3) Но О тоже делит AC в отношении BC/AD, т.к. треугольники BCO и DAO подобны. Значит O' совпадает с O.