Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Применим теорему Пифагора
Поскольку высота треугольника делит основание пополам, то длина половины основания будет равна 12 / 2 = 6см .
Высота с половиной основания и стороной равнобедренного треугольника образует прямоугольный треугольник. Соответственно, высота основания будет равна:
h = √ 102 - 62 = √64 = 8 см
Площадь равнобедренного треугольника будет равна площади двух прямоугольных треугольников, образованных боковыми сторонами, высотой и половинами основания равнобедренного треугольника. Применив формулу площади прямоугольного треугольника, получим:
S = 6 * 8 / 2 = 24 см2
Поскольку прямоугольных треугольников два, то общая площадь равнобедренного треугольника составит:
24* 2 = 48см2 .
можно площадь найти так
S=(1/2)ah=(1/2)*12*8=48 см2 a- основание h-высота
ответ: Площадь равнобедренного треугольника составляет 48 см2
Подробнее - на -
1)В прямоугольном треугольнике ABC, угол А=90 градусов, АВ=20 см, высота АД=12 см.
Найти: АС и COS угла С.
ДВ"=АВ"-АД" = 400-144=256
ДВ=16
треугольники АВС и ДВА подобны по первому признаку подобия (два угла равны), следовательно ДВ/АВ=АВ/СВ
16/20=20/СВ
СВ=20*20:16=25
АС"=СВ"-АВ"=25"-20"=625-400=225
АС=15
мы нашли АС=15,
теперь ищем CosC
CosC=АС/СВ=15/25=3/5
CosC=3/5
ответ: CosC=3/5, АС=15см
2)
AD=AB cos A, S = AB AD sin A = AB² sin A cos A = 1/2 AB² sin(2A) = 72 sin(82°) = 72 cos(8°) ≈ 71,2993 см²