Дін дә- 2.12) ав кесіндісінің ұштарынан abd = bac болатын. дай ас және bd түзулері жүргізілген, ал ав-ның ортасы о арқылы өтетін түзу бұл параллель түзулерді c және d нүкте лерінде қиып өтеді. егер bd = 8 см болса, онда ас-ны табыңдар,
Задание 1. В правильной пирамиде площадь основания составляет 1/3 площади полной поверхности. Найти двугранный угол при основании пирамиды.
Примем длину стороны a основания за 1, периметр Р = 3а = 3. Тогда площадь основания So = a²√3/4 = √3/4. Площадь полной поверхности S =3So = 3√3/4. Площадь боковой поверхности равна: Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2. А так как Sбок = (1/2)РА, то апофема А равна: А = 2Sбок/P = 2*(√3/2)/3 = √3/3. Высота основания h = a*cos30° = 1*(√3/2) = √3/2. Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6. Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание. cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2. α = arc cos(1/2) = 60°.
Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.
Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой. Сторона а основания равна: а = 2*1*cos(β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2). Апофема А равна: А = (а/2)*tgβ = cos(β/2)*tgβ. Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ (можно заменить функцию половинного угла на целого, но формула получится более громоздкая).
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
Объяснение:
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117
Примем длину стороны a основания за 1, периметр Р = 3а = 3.
Тогда площадь основания So = a²√3/4 = √3/4.
Площадь полной поверхности S =3So = 3√3/4.
Площадь боковой поверхности равна:
Sбок = S - So = (3√3/4) - (√3/4) = 2√3/4 = √3/2.
А так как Sбок = (1/2)РА, то апофема А равна:
А = 2Sбок/P = 2*(√3/2)/3 = √3/3.
Высота основания h = a*cos30° = 1*(√3/2) = √3/2.
Проекция апофемы на основание в правильной треугольной пирамиде равна (1/3)h = √3/6.
Двугранный угол между боковой гранью и основанием равен плоскому углу α между апофемой и её проекцией на основание.
cos α = ((1/3)h/A) = (√3/6)/(√3/3) = 3/6 = 1/2.
α = arc cos(1/2) = 60°.
Задание 2. В правильной четырехугольной пирамиде боковое ребро образует со стороной основания угол β. Отрезок, который соединяет центр вписанной в боковую грань окружности с вершиной основания этой грани, равен 1. Определить боковую поверхность пирамиды.
Заданный отрезок длиной 1 - это часть биссектрисы угла боковой грани при основании от вершины до пересечения с апофемой.
Сторона а основания равна:
а = 2*1*cos(β/2) = 2cos(β/2). Периметр основания Р = 4а = 8cos(β/2).
Апофема А равна:
А = (а/2)*tgβ = cos(β/2)*tgβ.
Тогда Sбок = (1/2)РА = (1/2)*(8cos(β/2))*(cos(β/2)*tgβ) = 4cos²(β/2)*tgβ
(можно заменить функцию половинного угла на целого, но формула получится более громоздкая).