D. оор коордепилир л vvд уу 279. АВ кесіндісі мен оның ортасы болатын С нүкте Егер: а) А(1,5; 7), С(2; 3,5) болса, В нүктесінің коорди ica, А нүктесінің координат
Из треугольника AMN можно вычислить, что угол А= 30 (180-60-90=30), тогда катет, который лежит напротив угла 30 град. = половине гипотенузы, то есть MN=1/2 AN, AN=2MN=2*6=12. Так как N середина AB, то AB = 24. Из треугольника AMN tg 60=AM/MN. AM=tg60*MN=6sqrt3 (sqrt-корень) Так как М - середина АС, то АС = 12sqrt3. Рассмотрим треугольник АВС. Угол А=30, значит противоположный катет СВ=половине гипотенузы. CB=1/2AB=12. Рассмотрим треугольник BCM. CM=6sqrt3, CB=12, C=90 градусов. По теореме Пифагора МВ=6sqrt7. Площадь прямоугольного треугольника = 1/2 произведение катетов. S(треугольника AMN)=1/2*6sqrt3*6=18sqrt3
Обозначим точку пересечения плоскости β отрезком CD буквой О.
DD1║CC1, CD- секущая, ⇒ накрестлежащие ∠D=∠C, вертикальные углы при О равны, ⇒ ∆ DOD1 подобен ∆ COC1 по первому признаку.
k=CC1:DD1=6/√3:√3=2
Тогда СО=2DO=²/₃ СD
ЕО=СО-СЕ
EO= \frac{2}{3} CD- \frac{1}{2} CD= \frac{1}{6} CDEO=
3
2
CD−
2
1
CD=
6
1
CD
∆ COC1 подобен ∆ EOE1 по первому признаку подобия ( ∠С=∠Е - соответственные при пересечении параллельных прямых ЕЕ1 и СС1 секущей CD, угол О - общий).
k= \frac{CO}{EO} = \frac{ \frac{2}{3} CD}{ \frac{1}{6} CD}= \frac{2*6}{3}= 4k=
EO
CO
=
6
1
CD
3
2
CD
=
3
2∗6
=4 ⇒
E E_{1}= \frac{6}{ \sqrt{3}}:4= \frac{6* \sqrt{3} }{ \sqrt{3}* \sqrt{3} *4}= \frac{ \sqrt{3}}{2} smEE
1
=
3
6
:4=
3
∗
3
∗4
6∗
3
=
2
3
sm