15) Цена за билет для одного школьника составляет рублей (умножаем на 80 потому, что при скидке 20% от первоначальной цены билета остаётся 100-20=80%). Значит, для четырёх школьников цена составит рублей.
16) MN - средняя линия треугольника ABC, так как из условия MN || BC и AM = MB. Отсюда BC = 2MN, AM = 0.5AB, AN = 0.5AC. Периметр треугольника AMN по этим утверждениям можно записать следующим образом: . Вынеся одинаковый множитель за скобку, получим: , а так как выражение в скобках - это данный нам периметр, то периметр треугольника AMN можно выразить как половину периметра треугольника ABC, то есть, 32.
17) Угол DBC равен углу ADB (как внутренние накрест лежащие при параллельных прямых BC и AD и секущей BD). Отсюда, угол DBC составляет 34°. Значит, целиком угол B составляет (48+34)° = 82°.
18) Расстояние от точки до прямой - это перпендикуляр к этой прямой. Точка пересечения диагоналей прямоугольника лежит на прямой, на которой находится его средняя линия. Получаем, что наше расстояние параллельно сторонам BC и AD прямоугольника и равно половине любой из этих сторон. Отсюда BC = AD = 8*2 = 16 см. Площадь прямоугольника ABCD равна 12*16 = 192 см².
19) , значит, отрезок нижнего основания от высоты до ближайшей боковой стороны равен 3 см. Так как высота, точка которой совпадает с началом либо концом меньшего основания, отсекает от трапеции прямоугольный треугольник с катетами, равными высоте и найденному только что отрезку, и гипотенузой, равной боковой стороне. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, отсюда боковая сторона равна 3*2 = 6 см. Периметр трапеции будет составлять 11+6+5+6=28 см.
20) Угол BMC равен углу ABM как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BM. Значит, треугольник BCM - равнобедренный, откуда CM = CB = 12 см. Периметр параллелограмма ABCD будет равен 2*(12+(12+5)) = 58 см. Такой же ответ получим, если предположим, что угол B - тупой и пересечение с боковой стороной падает на продолжение этой стороны.
1)четырехугольник - это квадрат. Его сторона равна диаметру вписанной окружности, т. е 2R, где R- радиус вписанной окружности. Тогда площадь квадрата равна
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников. Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда X^2= 4R^2/3, X =2R/корень из 3 Площадь треугольника Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3 Площадь шестиугольника Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3
Объяснение:
15) Цена за билет для одного школьника составляет рублей (умножаем на 80 потому, что при скидке 20% от первоначальной цены билета остаётся 100-20=80%). Значит, для четырёх школьников цена составит рублей.
16) MN - средняя линия треугольника ABC, так как из условия MN || BC и AM = MB. Отсюда BC = 2MN, AM = 0.5AB, AN = 0.5AC. Периметр треугольника AMN по этим утверждениям можно записать следующим образом: . Вынеся одинаковый множитель за скобку, получим: , а так как выражение в скобках - это данный нам периметр, то периметр треугольника AMN можно выразить как половину периметра треугольника ABC, то есть, 32.
17) Угол DBC равен углу ADB (как внутренние накрест лежащие при параллельных прямых BC и AD и секущей BD). Отсюда, угол DBC составляет 34°. Значит, целиком угол B составляет (48+34)° = 82°.
18) Расстояние от точки до прямой - это перпендикуляр к этой прямой. Точка пересечения диагоналей прямоугольника лежит на прямой, на которой находится его средняя линия. Получаем, что наше расстояние параллельно сторонам BC и AD прямоугольника и равно половине любой из этих сторон. Отсюда BC = AD = 8*2 = 16 см. Площадь прямоугольника ABCD равна 12*16 = 192 см².
19) , значит, отрезок нижнего основания от высоты до ближайшей боковой стороны равен 3 см. Так как высота, точка которой совпадает с началом либо концом меньшего основания, отсекает от трапеции прямоугольный треугольник с катетами, равными высоте и найденному только что отрезку, и гипотенузой, равной боковой стороне. Катет, лежащий против угла в 30 градусов, равен половине гипотенузы, отсюда боковая сторона равна 3*2 = 6 см. Периметр трапеции будет составлять 11+6+5+6=28 см.
20) Угол BMC равен углу ABM как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BM. Значит, треугольник BCM - равнобедренный, откуда CM = CB = 12 см. Периметр параллелограмма ABCD будет равен 2*(12+(12+5)) = 58 см. Такой же ответ получим, если предположим, что угол B - тупой и пересечение с боковой стороной падает на продолжение этой стороны.
Sкв = 4R^2
2) Разобьем шестиугольник на 6 треугольников отрезками, выходящими из центра к вершинам шестиугольника. Все эти треугольники правильные и равны между собой, т.к. угол при вершине 60 градусов и они равнобедренные, а высотой треугольника является радиус вписанной окружности, т. е. R. Сторону треугольников обозначим через X. Рассмотрим один из треугольников.
Высота является в нем и медианой. Тогда, рассмотрев треугольник, образованный отрезком, проведенным из центра, половиной основания и высотой, имеем по теореме Пифагора
R^2 +(X/2)^2 = X^2, откуда
X^2= 4R^2/3, X =2R/корень из 3
Площадь треугольника
Sтр=X*R/2= 2R*R/2*корень из 3 =R^2/корень из 3
Площадь шестиугольника
Sш =6Sтр= 6R^2/корень из 3 = 2* корень из 3* R^2
Отношение площадей
Sкв/Sш = 4R2/2* корень из 3* R^2 = 2/корень из 3