Внешний угол треугольника равен сумме двух других углов, не смежных с ним. А угол, смежный с внешним углом, находится по формуле: 180-градусная мера внешнего угла. Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов. А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов. ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
TMNK- равнобедренная трапеция вписана окружность. Площадь трапеции 125. Хорда, параллельная основаниям , проведена в точки касания боковых сторон и равна 8. Найдите площадь круга.
Отсюда угол, смежный с внешним углом, равен 180-40=140 градусов.
А так как этот угол лежит напротив основания равнобедренного треугольника, а сумма углов, находящихся при основании этого самого треугольника, равна 40-ка градусам. То сами оставшиеся углы равны 40:2=20 градусов.
ответ: Тупой угол с градусной мерой в 140 градусов и два равных угла по 20 градусов.
TMNK- равнобедренная трапеция вписана окружность. Площадь трапеции 125. Хорда, параллельная основаниям , проведена в точки касания боковых сторон и равна 8. Найдите площадь круга.
Объяснение:
S(круга)= π R². R-?
1) Пусть О-центр вписанной окружности, ОА=ОР=ОY=R.
S (трапеции) =1/2*h*(a+b) , h=2R , (a+b)/2- длина средней линии.
2) Проведем среднюю линию НС. Она будет параллельна АВ, и пройдет через центр О (по свойству противоположных сторон описанного четырехугольника)
3) Т.к АВ параллельна основаниям , то ∠АХО=90° , тк радиус проведенный в точку касания перпендикулярен касательной.
ΔАХО-прямоугольный , cos∠ОАХ=АХ/АО , cos∠ОАХ=4/R
4) ∠ОАХ=∠АОН , тк АХ|| НО , АО-секущая.
ΔАОН-прямоугольный, cos∠ОАН=АО/НО, 4/R= R/НО ,4HO=R², 2(2HO)=R², HC=R²/2,
5) S (трапеции) =1/2 *(a+b) *h или 125= R²/2*2R , 125=R ³, R=5
S(круга)= 25π ед².