Центр квадрата - точка О - точка пересечения диагоналей. Диагонали квадрата равны и точкой пересечения делятся пополам: ОА = ОВ. Если проекции наклонных, проведенных из одной точки, равны, то равны и сами наклонные. ОА - проекция МА на плоскость квадрата, ОВ - проекция МВ, значит МА = МВ, т.е. ΔМАВ равнобедренный.
Пусть Н - середина АВ. Так как треугольник МАВ равнобедренный, то МН - его медиана и высота. ОН = 0,5AD = 9 см как средняя линия ΔDAB.
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .
Диагонали квадрата равны и точкой пересечения делятся пополам:
ОА = ОВ.
Если проекции наклонных, проведенных из одной точки, равны, то равны и сами наклонные.
ОА - проекция МА на плоскость квадрата, ОВ - проекция МВ, значит
МА = МВ, т.е. ΔМАВ равнобедренный.
Пусть Н - середина АВ. Так как треугольник МАВ равнобедренный, то МН - его медиана и высота.
ОН = 0,5AD = 9 см как средняя линия ΔDAB.
ΔМОН: ∠МОН = 90°, по теореме Пифагора
МН = √(МО² + ОН²) = √(144 + 81) = √225 = 15 см
Smab = AB · MH / 2 = 18 · 15 / 2 = 135 см²
ответ:
средневековье. после падения александрии большинство работ древнегреческих были рассеяны или утрачены.за последние 300 лет доказательная была существенно расширена, а по своим и степени общности результатов она стала заметно отличаться от элементарной (т.е. , изложенной в началах). французский ж.дезарг (1593-1662) в связи с развитием учения о перспективе занялся исследованием свойств фигур в зависимости от их проекций. тем самым он заложил основу проективной , которая изучает те свойства фигур, которые остаются неизменными при различных проекциях. в 19 в. это направление получило существенное развитие. проективная , конические сечения и новая треугольников и окружностей составили содержание современной т.н. чистой .