Без рисунка объаснить сложно. См. вложение. Даны прямые а и b. Нужно на прямой а построить точку (пусть это будет точка М), расстояние от которой до прямой b будет равно длине отрезка PQ, Известно, что расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой. Построим на прямой b перпендикуляр по общеизвестному начертим две пересекающиеся окружности одинакового произвольного радиуса с центрами на прямой b, точки пересечения соединим и получим перпендикуляр. На этом перпендикуляре отложим ТЕ=длине отрезка PQ. Через точку Е проведем параллельно прямой b прямую до пересечения с прямой а. ( Это сделаете так же, как строили перпендикуляр к b) Так как расстояние между всеми точками параллельных прямых одинаково, точка М на прямой а и есть искомая точка. Расстояние от нее до прямой b равно длине отрезка PQ
Задачи на построение в прикреплённом изображении.
3) sin α = 15/17;
cos α = 8/15;
tg α = 1 7/8.
Объяснение:
Задача 3.
1) Обозначим данный треугольник АВС. По условию АВ = ВС = 17 см, основание АС = 16 см.
Пусть ВН - медиана, проведённая к основанию, по свойству равнобедренного треугольника она является высотой, тогда
АН = НС = 16 : 2 = 8 (см) и ∠ АНВ = 90°.
2) В прямоугольном треугольнике АВН по теореме Пифагора
АВ² = АН² + ВН²
ВН² = АВ² - АН² = 17² - 8² = 289 - 64 = 225,
ВН = √225 = 15 (см).
3) По определению в ∆АВН
sin A = ВН/АВ = 15/17;
cos A = AH/AB = 8/15;
tg A = BH/AH = 15/8 = 1 7/8.
Даны прямые а и b.
Нужно на прямой а построить точку (пусть это будет точка М), расстояние от которой до прямой b будет равно длине отрезка PQ,
Известно, что расстояние от точки до прямой равно длине перпендикуляра, проведенного из этой точки к данной прямой.
Построим на прямой b перпендикуляр по общеизвестному начертим две пересекающиеся окружности одинакового произвольного радиуса с центрами на прямой b, точки пересечения соединим и получим перпендикуляр.
На этом перпендикуляре отложим ТЕ=длине отрезка PQ.
Через точку Е проведем параллельно прямой b прямую до пересечения с прямой а. ( Это сделаете так же, как строили перпендикуляр к b)
Так как расстояние между всеми точками параллельных прямых одинаково, точка М на прямой а и есть искомая точка.
Расстояние от нее до прямой b равно длине отрезка PQ