Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.
противоположные грани равны между собой;
2.
боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.
как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Прямоугольный параллелепипед – это параллелепипед, все грани которого являются прямоугольниками. Другими словами, это прямая призма, основания которой – прямоугольники. (эти определения эквивалентны).
тогда :
1.противоположные грани равны между собой;
2.боковые ребра перпендикулярны основаниям, то есть являются высотами;
3.как следствие, формула для объема принимает вид: V=abc, где a, b, c – три различных боковых ребра.
▸ Диагональ прямоугольного параллелепипеда – это отрезок, соединяющий две противоположные (не лежащие в одной грани) вершины. 1) Все диагонали равны, пересекаются в одной точке и делятся ею пополам; 2) Диагональ d можно найти по формуле: d2=a2+b2+c2.