дам 20- В прямоугольной трапеции АВСК меньшая боковая сторона равна 6 см, угол К равен 45°, а высота СН делит основание АК пополам. Найдите площадь трапеции.
Высота равнобедренного треугольника, проведенного к основанию 6, делит основание пополам. ( cм. рисунок в приложении) Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник) S=6·4/2=12 кв. ед Вершина пирамиды проектируется в центр описанной окружности (см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу) r=S/p=12/(5+5+6)/2=24/16=3/2=1,5 H=r·tg60°=1,5·√3=3√3/2
-1x -1y +1 =0 или y = 1-x.
Объяснение:
Найдем уравнение прямой, проходящей через две точки по формуле:
(X - Xm)/(Xn-Xm) = (Y-Ym)/(Yn-Ym). Тогда
(X - (-1))/(0-(-1)) = (Y-2)/(1-2). =>
(X+1)/1 = (Y-2)/-1 =>
-1x -1y +1 =0 или y = 1 - x.
Второй вариант:
Уравнение прямой можно записать так:
y = kx + b.
Точки М(-1;2) и N(0;1) лежат на этой прямой. значит координаты этих точек должны удовлетворять уравнению прямой.
Подставим координаты точек в уравнение и получим:
2 = k·(-1) + b. (1)
1 = k·(0) + b. (2) Из (2) получаем значение: b =1.
Подставим b в (1) и получим k = -1.
Тогда наше уравнение примет вид:
y = -x + 1 или
-1x - 1y + 1 = 0.
Высота разбивает равнобедренный треугольник на два прямоугольных с гипотенузой 5 см и катетом 3 см. Второй катет 4 см ( по теореме Пифагора, это египетский треугольник)
S=6·4/2=12 кв. ед
Вершина пирамиды проектируется в центр описанной окружности
(см. рисунок, три прямоугольных треугольника равны по катету ( высота пирамиды - общая и острому углу)
r=S/p=12/(5+5+6)/2=24/16=3/2=1,5
H=r·tg60°=1,5·√3=3√3/2