Квадрат это ромб у которого все углы прямые или прямоугольник у которого смежные стороны равны. Можно конечно построить график и доказать на полученном чертеже , мол стороны попарно параллельны и все стороны равны. А можно найти длины каждой стороны ( например АВ , АВ имеет координаты ( из координаты конца, отнимаем соответствующие координаты начала, АВ( 5-1;2-2) АВ(4;0). А длина АВ находится как корень квадратный из суммы квадратов координат АВ=√4²+0²=4, аналогично с другими сторонами). А если посмотреть внимательно на координаты точек, то можно увидеть , что АС и ВД соответственно лежат на прямых х=1 и х=5, которые параллельны оси ОУ, а значит и друг другу. А АВ и СД на прямых у=2 и у=-2, параллельных оси ОХ, а значит и друг другу. Получаем, что у данного четырехугольника все стороны равны и попарно параллельные + все углы прямые, т.е мы получили квадрат ч.т.д.
Введем переменную. Пусть 1часть=х, то 7частей=7х, 24части=24х. Гипотенуза равна 25. По теореме Пифагора 625=49x^2+576x^2 625=625x^2 x^2=1 x=1 Значит катеты равны 7см и 24см. Высота делит гипотенузу на два отрезка. Пусть один отрезок х,тогда второй 25-х. Высота делит треугольник на два прямоугольных треугольника у которых высота общая. Найдем высоту из одного треугольника: 49-(25-х)^2; Из второго треугольника высота равна 576-x^2. И так как высота у них общая, то 49-(25-x)^2=576-x^2 49-(625-50x+x^2)=576-x^2 49-625+50x-x^2=576-x^2 50x=1152 x=23,04(первый отрезок) 25-23,04=1,96см(второй)
Можно конечно построить график и доказать на полученном чертеже , мол стороны попарно параллельны и все стороны равны.
А можно найти длины каждой стороны ( например АВ , АВ имеет координаты ( из координаты конца, отнимаем соответствующие координаты начала, АВ( 5-1;2-2) АВ(4;0). А длина АВ находится как корень квадратный из суммы квадратов координат АВ=√4²+0²=4, аналогично с другими сторонами).
А если посмотреть внимательно на координаты точек, то можно увидеть , что АС и ВД соответственно лежат на прямых х=1 и х=5, которые параллельны оси ОУ, а значит и друг другу. А АВ и СД на прямых у=2 и у=-2, параллельных оси ОХ, а значит и друг другу. Получаем, что у данного четырехугольника все стороны равны и попарно параллельные + все углы прямые, т.е мы получили квадрат ч.т.д.
625=625x^2
x^2=1
x=1
Значит катеты равны 7см и 24см.
Высота делит гипотенузу на два отрезка. Пусть один отрезок х,тогда второй 25-х.
Высота делит треугольник на два прямоугольных треугольника у которых высота общая. Найдем высоту из одного треугольника: 49-(25-х)^2;
Из второго треугольника высота равна 576-x^2. И так как высота у них общая, то 49-(25-x)^2=576-x^2
49-(625-50x+x^2)=576-x^2
49-625+50x-x^2=576-x^2
50x=1152
x=23,04(первый отрезок)
25-23,04=1,96см(второй)