Дан четырёхугольник, три точки которого лежат на окружности, а четвёртая — в её центре. Отрезки, соединяющие эти точки, образуют следующие углы: ∠ADC=99°, ∠DAB=28°. Найди ∠BCD, ответ дай в градусах (запиши только число).
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
в смысле даны три вершины? если даны их градусные меры, то по ним одним ничего не построишь, нужны еще и длины сторон. если это все дано, то начерти отрезок, равный какой-нибудь из данных сторон, от ее конца отложи прилежащий к ней данный угол, на получившейся стороне угла отложи еще один отрезок, равный другой стороне и от его конца также отложи прилежащий к нему угол, потом на новой получившейся прямой откладываешь последнюю данную сторону и от нее угол. по идее первый начерченный отрезок должен пересечься с последней построенной прямой, вот и получилась четвертая вершина:) если что-то из вышеперечисленного не дано, то это некорректное условие задачи.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
в смысле даны три вершины? если даны их градусные меры, то по ним одним ничего не построишь, нужны еще и длины сторон. если это все дано, то начерти отрезок, равный какой-нибудь из данных сторон, от ее конца отложи прилежащий к ней данный угол, на получившейся стороне угла отложи еще один отрезок, равный другой стороне и от его конца также отложи прилежащий к нему угол, потом на новой получившейся прямой откладываешь последнюю данную сторону и от нее угол. по идее первый начерченный отрезок должен пересечься с последней построенной прямой, вот и получилась четвертая вершина:) если что-то из вышеперечисленного не дано, то это некорректное условие задачи.