В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Дано:
SABC - пирамида
SО - высота
AB=8см
ã=45°
V-?
Объем пирамиды: V=1/3×Sосн×h
В основании лежит правильный треугольник, площадь которого S=a²√3/4=8²√3/4=16√3см².
Высота правильного треугольника: h=a√3/2= 8√3/2=4√3см.
Точка, на которую опущена высота, является серединой правильного треугольника (точка пересечения медиан). Эти медианы делятся в отношении 2:1 от вершины.
AO=2×4√3/3=8√3/3.
Рассмотрим треугольник AOS, у которого O=90°, A=S=45°. Если два угла равны 45°, то их катеты равны. Значит, высота пирамиды равна 8√3/3.
Найдем объем:
V=1/3×16√3×8√3/3=128/3 см³
c^2 = a^2 + b^2 - 2ab*cos (гамма)
15^2 = 12^2 + b^2 - 2*12*b*cos(120) = 12^2 + b^2 - 24b*(-1/2)
225 = 144 + b^2 + 12b
b^2 + 12b - 81 = 0
D/4 = 6^2 + 81 = 36 + 81 = 117 = (3√13)^2
b = -6 + 3√13 = 3√13 - 6 ~ 4,81
По теореме синусов
a/sin(альфа) = b/sin(бета) = c/sin(гамма)
sin(гамма) = sin(120) = √3/2
c/sin(гамма) = 15 / (√3/2) = 15*2/√3 = 30√3/3 = 10√3
sin(альфа) = a / (c/sin(гамма)) = 12 / (10√3) =
= 12√3/(10*3) = 2√3/5 ~ 0,6928;
альфа ~ 43,85 градуса
sin(бета) = b / (c/sin(гамма)) = (3√13 - 6) / (10√3) =
= (3√13 - 6)*√3 / (10*3) = (√13 - 2)*√3 / 10 ~ 0,278;
бета ~ 16,15 градусов