Мы знаем, что катет, лежащий против угла в 30°, равен половине гипотенузы. В данном случае гипотенуза - AB, катет - BD, который леждит против угла DAB. Из этого следует, что этот угол равен 30°
AD||BC, AB - секущая, углы ABC и BAD - внутренние односторонние, в сумме дают 180° =>
ABCD - пар-м. BD перпенд AD. BD = 0,5*AB
Рассмотрим ΔABD.
Мы знаем, что катет, лежащий против угла в 30°, равен половине гипотенузы. В данном случае гипотенуза - AB, катет - BD, который леждит против угла DAB. Из этого следует, что этот угол равен 30°
AD||BC, AB - секущая, углы ABC и BAD - внутренние односторонние, в сумме дают 180° =>
Угол ABC = 180°- угол BAD=180°-30°=150°
Отсюда ответ: больший угол параллелограмма равен 150°.
Угол ABM=30°
BC||DA, BM -секущая, углы CBM и BMA внутр. односторон., в сумме - 180°.
Т.к. BM перпендикурярна AD, то угол BMA равен 90°. CBM+BMA=180°=>CBM=90°.
Угол CBM = уголCBA+угол ABM, 90°=CBA+30°, CBA=60°
BC=AB (т.к. ромб)=> Δ ABC - равнобедренный => углы BCA и BAC равны.
BAC+BCA+CBA=180°=>BCA=BAC=CBA=60°=> ΔABC - равносторонний => AC=BC=BA=6
Рассмотрим ΔABM -прямоугольный:
Катет(AM), лежащий проив угла в 30°(угол ABM) равен половине гипотинузе(AB) => AM=0,5*AB=0,5*6=3
ответ: AM=3
1). Угол В = 75° по теореме о сумме углов треугольника
2). Рассмотрим треугольник ВДА
угол В = 180° - угол Д - угол А
угол А = 180° - угол Д - угол В
Мы видим, что у обоих углов присутствует выражение "180° - угол Д", а дальше они вычитают друг друга, что говорит о том, что они равны.
если угол А = углу В, то треугольник ВДА - равнобедренный, тогда угол САД = 75° - 45° = 30°
(т.к. углы при основании у равнобедренного треугольника равны)
Это единственное решение, которое я нашел за минут. Задача для меня даже странно, что показалась сложной.