Пусть К - точка пересечения окружности с АD, М - центр окружности. Диагонали ромба точкой пересечения делятся пополам, пересекаются под прямым углом и являются биссектрисами его углов. ⇒ Треугольники АОD и ТОD прямоугольные и равны между собой. Из ∆ DОС tg∠ODC=OC:OD OC=AC:2=6; OD=BD:2-6√3 tg∠ODC =6:6√3=1/√3 - это тангенс 30º Угол АDО=углу СDО, отсюда дуга КО=дуге ТО, а так как дуга DmКО=дуге DnТО, то дугa КmD=дуге ТnD. Равные дуги стягиваются равными хордами. ⇒ КD=ТD ⇒ Сегменты DmК и DnТ равны. DM=TM=KM- радиусы. Равнобедренные ∆ DКМ=∆ DТМ по трем сторонам. Углы при DТ и DК равны 30º, следовательно, углы при М равны 180º-(30º+30º)=120º ⇒ угол КМТ=360º-2*120º=120º. Площадь круга радиусами DМ, КМ, ТМ делится на 3 равные части. DО - диаметр, следовательно r=DМ=DO:2=3√3 Площадь круга находим по формуле S=πr²S=27π Площадь 1/3 круга равна 27π:3=9π S каждого из сегментов DmK и DnT равны разности между площадью 1/3 круга и площадью треугольника DМТ. Ѕ ∆ DМТ=DМ*ТМ*sin 120º:2=(27√3):4 S сегмента =9π-(27√3):4=≈ 7,37 см² S DmT+S DnT=2*7,37= ≈ 14,74см² - искомая площадь.
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
Диагонали ромба точкой пересечения делятся пополам, пересекаются под прямым углом и являются биссектрисами его углов. ⇒
Треугольники АОD и ТОD прямоугольные и равны между собой.
Из ∆ DОС tg∠ODC=OC:OD
OC=AC:2=6;
OD=BD:2-6√3
tg∠ODC =6:6√3=1/√3 - это тангенс 30º
Угол АDО=углу СDО, отсюда дуга КО=дуге ТО, а так
как дуга DmКО=дуге DnТО, то дугa КmD=дуге ТnD.
Равные дуги стягиваются равными хордами. ⇒
КD=ТD ⇒ Сегменты DmК и DnТ равны.
DM=TM=KM- радиусы.
Равнобедренные ∆ DКМ=∆ DТМ по трем сторонам.
Углы при DТ и DК равны 30º, следовательно,
углы при М равны 180º-(30º+30º)=120º ⇒
угол КМТ=360º-2*120º=120º.
Площадь круга радиусами DМ, КМ, ТМ делится на 3 равные части.
DО - диаметр, следовательно
r=DМ=DO:2=3√3
Площадь круга находим по формуле
S=πr²S=27π
Площадь 1/3 круга равна 27π:3=9π
S каждого из сегментов DmK и DnT равны разности между площадью 1/3 круга и площадью треугольника DМТ.
Ѕ ∆ DМТ=DМ*ТМ*sin 120º:2=(27√3):4
S сегмента =9π-(27√3):4=≈ 7,37 см²
S DmT+S DnT=2*7,37= ≈ 14,74см² - искомая площадь.
Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°.
2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD.
, как катет лежащий против угла 30 в треугольнике BMC.
3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом
Тогда в ромбе
4 треугольник AMD равносторонний, , тогда
Треугольник BAM равнобедренный, АВ=АМ, тогда
5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4.
Тогда ВС=AD=7, АВ=CD=3, периметр .