Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
В треугольнике АВС известны длины сторон АВ =8 и АС = 64.
Точка О центр окружности, описанной около треугольника АВС. Прямая ВD перпендикулярная прямой АО , пересекает сторону АС в точке D. Найдите СD.
–––––––––––––––––
Продлим ВD до пересечения с окружностью в точке М.
Хорда МВ перпендикулярна радиусу ОА ( по условию) и при пересечении с ним делится пополам ( свойство).
Тогда радиус ОА делит угол ВОМ пополам. Дуги АМ и АВ, на которые опираются равные центральные углы МОА и ВОА, также равны.
Отсюда следует равенство углов АВМ и ВСА - опираются на равные дуги.
В треугольниках АВС и АВD угол ВАС общий, ∠АВD=∠ВСА ⇒
∆ АВС ~ ∆ АВD по 1-му признаку подобия. Из подобия следует отношение:
АВ:АС=АD:АВ
АВ²=АD•AC
64=AD•64⇒ AD=1
CD=64-1=63 (ед. длины)